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We continue the construction and the analysis of essentially non-oscillatory shock capturing
methods for the approximation of hyperbolic conservation laws. We present an hierarchy of
uniformly high-order accurate schemes which generalizes Godunov’s scheme and its second-
order accurate MUSCL extension to an arbitrary order of accuracy. The design mvolves an
essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell
averages, time evolution through an approximate solution of the resulting initial value
problem. and averaging of this approximate solution over each cell The reconstruction
algorithm is denived from a new interpolation techmque that. when apphied to piecewise
smooth data. gives high-order accuracy whenever the function 1s smooth but avoids a Gibbs
phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses
an adaptive stencil of grid points and, consequently. the resulting schemes are highly non-
linear. € 1987 Academic Press. Inc

1. INTRODUCTION

In this paper, the third in a series, we continue to study the use of essentially
non-oscillatory, uniformly high-order accurate schemes for the numerical
approximation of weak solutions of hyperbolic systems of conservation laws

u,+ flu),=0 i1.la)
u{x, 0) = ug(x). {1.1b)
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Here u=(u,,..,u,)" is a state vector and f(u), the flux, is a vector valued

function of m components. The system is hyperbolic in the sense that the m xm
Jacobian matrix

A(u)=0f/ou
has m real eigenvalues
afu)<a{uy< - <a,(u)

and a complete set of m linearly independent right-eigenvectors {r(u)}7_,. We
denote by {/(u)}7_, the left-cigenvectors of A(u) and assume that /,r, = d,.

We assume that the initial value problem (IVP) (1.1) (embedded in an
appropriate setting which includes entropy considerations) is well posed in the
sense of Cauchy and that its weak solutions are generically piecewise smooth. We
denote its evolution operator by E(¢), ie.,

u(-, )=E(t) uy,. (L.2)

Let w(x) denote the sliding average of w(x)

#(x) s% J"”z wix+ ) dy = (A4, w)(x) (1.3a)

— 2

We note that w is smoother than w by one derivative, and that at the points of
smoothness

w(x)=w(x)+ O(h?). (1.3b)
The sliding average in x of a weak solution of (1.1), u(x, ¢), satisfies
0 _ 1
5 4 0+ Lf(u(x +h/2, 1)) — fu(x— k)2, 1))] =0. (1.4)

Integrating this relation from ¢ to ¢+ 7, we get
a(x, t+t)=d(x, ) — AL f(x + h/2, t; u)— f(x — k2, t; u)], (1.5a)
where A =1/h and

flx, ;w)= % L f(w(x, t+1)) dn. (1.5b)

Let {I, x[t,,1,,,1}, where I,=|x,_i»,X,, 1], and x,=ah, t,=nt, be a par-
tition of R x R*. Writing relation (1.5) at x=x,, t=1, we get

17]"+1= ﬁ;’*‘l[f(x]+ 12> Las Ll) _‘f‘(xj—l/'27 Ly u)] (163')
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HIGH ORDER ACCURATE SCHEMES, II

Here

U =u(x, t,,)=%jl uix, t,) dx {1.6b)
is the “cell-average” of u at time ¢,.

In this paper we describe a class of numerical schemes that generalizes
Godunov’s scheme [5] and its second-order extensions [22, 4, 15] to any finite
order of accuracy. These schemes can be written in standard conservation form

U;IH = v;"l(fjﬂ'z"f/ﬂ )= (Eh(f)'“")r (1.72)

Here E,(r) denotes the numerical solution operator and f,, -, the numerical flux.
denotes a function of 2k variables

f;+ 12 :Jf(’v’,n~k ot B

which is consistent with the flux f(u) in (1.1) in the sense that f(u, u,..., u)= flu).
We design these schemes so that the conservation form (1.7a) will approximate
(1.5) to a high order of accuracy. Setting v#=#/ in (1.7) and comparing it to (1.6}
we see that if the numerical flux (1.7b) can be expanded as

12 Zf(xjH;z, tosu)+dix,,  2) R+ O ) (1.3a)
then

vptt=ar = Ald(x, o 5) —d(x, )R+ O(R ).

This shows that if the numerical flux f, , , , satisfies (1.8a) then the truncation error
in the sense of cell averages is

ulx,, 1, + )= [Efr)a(-, 1,)],=ALd(x,, ) —dix,_ )T A"+ O ™), (1.8b)

which is O(4"**) where d(x) is Lipschitz continuous.

When f(u) is a nonlinear function of u, the approximation of f (X, 120 Do u) tO
O(h") requires knowledge of pointwise values of the solution to the same order of
accuracy. In order to design a numerical flux that satisfies (1.8a), we must extract
high order accurate pointwise information from the given {¢"}, which are
approximations to {a”}, the cell averages (1.6b) of the solution. Solving this
reconstruction problem to an arbitrarily high order of accuracy », without introduc-
ing O(1) Gibbs-like spurious oscillations at points of discontinuity, is the most
important step in the design of our new schemes.

Given w, = w(x,), cell averages of a piecewise smooth function w(x), we construct
R(x; w), a piecewise polynomial function of x of uniform polynomial degree (v — i}
that satisfies:



234 HARTEN ET AL.

(i) At all points x for which there is a neighborhood where w is smooth

R(x; ) = w(x) + e(x) &' + O(h"* 1. (1.9a)

(ii) Conservation in the sense of
R(x;;w)=w, (1.9b)

here R denotes the sliding average (1.3) of R.
(iii) It is essentially non-oscillatory

TV(R(-; W) TV(w)+ O(h"), (1.9¢)

where TV denotes total variation in x.

The inequality (1.9c) implies that the reconstruction R is essentially non-
oscillatory in the sense that it does not have a Gibbs-like phenomenon of
generating O(1) spurious oscillations at points of discontinuity that are propor-
tional to the size of the jump there. In [ 16, 11, 17] we describe R(x; ) in the scalar
case. We show there that R may occasionally produce O(4') spurious oscillations
which are on the level of the truncation error. These small spurious oscillations may
occur only in the smooth part of w and they usually disappear once w(x) is ade-
quately resolved on the computational mesh. For sake of completeness we review
this reconstruction algorithm in Section 3; we shall extend it to vector functions
w(x) in Section 5 of this paper.

Using the reconstruction (1.9) we can express the abstract form of our new
schemes by

E(t)-w=A," E(t)- R(-; W) (1.10)

Here A, is the cell-averaging operator on the RHS of (1.3), £(¢) is the exact
evolution operator (1.2), and w is any piecewise smooth function of x. These
schemes are a generalization of Godunov’s scheme and its second-order extensions
in the sense that (1.10) with the first-order accurate piecewise constant reconstruc-
tion

R(x;w)=w, for x,_1,<x<X,p (1.11)
is exactly Godunov’s schemes [5]; (1.10) with the second-order accurate piecewise
linear reconstruction

R(x; w)=w,+s(x—x,) for x, ,<x<x,,n (1.12a)

such that

s,=wy(x,)+ O(h), (1.12b)
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is the absiract form of the second-order extensions to Godunov's scheme described
in [22,4, and 157].

We recall that the evolution operator E(¢) is monotone in the scalar case. Since
A, the cell-averaging operator is also monotone we see that in the scalar case

TV(E,(t) W)= TV(A4," E(t)- R(-; W) < TV(R(-; %)) {1.13a)

If w in (1.13a) is the sliding average of a piecewise smooth function w{x}, it
follows then from (1.9¢) that

TV(E,(1) W) < TV(w) + O(h). (1.13b)

This shows that the schemes (1.10) in the scalar case are essentiaily non-
oscillatory in exactly the same way as the reconstruction: They do not have a
Gibbs-like phenomenon at discontinuities, yet they may occasionally produce small
spurious oscillations on the level O(4") of the trunction error (see Remark 1.3 at the
end of this section).

Equation (1.10) is the abstract operator expression of a scheme in the conser-
vation form (1.7). Although the scheme generates discrete values ¢, which are rth
order accurate approximations to the cell-averages i, its operation involves a
globally defined pointwise approximation to u(x. r) of the same order of accuracy.
which we denote by wv,ix, r). The latter is defined for all x in the time-strips
t,<t<t,,,, with a possible discontinuity at {r,}: we shall use the standard
notation v,(x, 1,1+ 0) to distinguish between the two possibly different values.

We define v,(x, 1) via the following algorithmic description of the scheme (1.10).
We start by setting

where u, is the given initial datum (1.1b), and i, is its sliding average {1.3a).
Having defined ¢" = {v7'}, approximation to {a}} in (1.6b), we proceed to evaluate
" *1 by the following three steps:

v
{i) Reconstruction. Define
v(x, t,+0)= R(x; "), {1.14a}

Note that v,(x, £, +0) is a pointwise approximation to u(x, z,,).
(i1} Solution in the small. For t,<t<t,+1=1,,,, define

vil3 1) =E(t—1,) v,( 51, +0). (1.14by
(ii1) Cell averaging. Close the time loop of the algorithm by defining

_ | QA .
Uj”+1=l7h(x,§fn+1—0)=zf tplx, 1, —O})dx {1.14c)
T ]
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We note that v,, being an exact solution of (1.1)in 7, <t <1, ,, satisfies (1.5) in
this strip. Using the conservation property (1.9b) of the reconstruction in (1.14a),
ie.,

ou(x,, 1, +0) =07, (1.15)

we get from (1.5) that the schemes (1.10) and (1.14) satisfy the conservation form

U;'1+lzl’;l_i(f]+1,(2_f_;—l/2) (1163)
with the numerical flux

= -

.f;+1/ f j+[/2’ 1ys _—f fU j+1n,[ +17))d (116]3)

We turn now to examine the local truncation error of the scheme. For this pur-
pose we consider a single application of (1.14) starting with v =7, the exact celi
averages of the solution. It follows from (1.92) and (1.14a) that

o, 1, +0)=u(x, 1,) +e(x) h"+ O(h"™"). (L17a)

The definition (1.14b) and our assumption of the well-posedness of the IVP (1.1)
imply that

v,(x, t)=u(x, )+ O(h") for ¢, <t<t,,,. (1.17b)

This in turn implies that the numerical flux (1.16b) of the scheme satisfies (1.8a),
L.,

Fri1n =% 2 tas )+ d(x, ) BT+ ORT Y, (L.17¢c)

Clearly non-smoothness of d(x) in (1.17¢) can result only from non-smoothness
of the coefficient e(x) in (1.17a). It follows then from (1.8b) that away from points
of discontinuity and points at which e{x) fails to be Lipschitz continuous, the local
truncation error in the sense of cell-averages is O(h"* ).

Let u(x, ) be a smooth solution of (1.1) and let us suppose that as #—0,

= O(h), the numerical approximation converges pointwise to u(x, ¢). If e(x) is
globally Lipschitz continuous then the local truncation error in the sense of cell
averages is globally O(h"*!). At time 1, after performing N =/t time-steps, we
expect the cumulative error to be O(4"), i.e
N =idlx,, ty)+Oh") (1.18a)

J

In this case we sce from (1.9a) that

vu(x, ty+0)= R(x; vY) = ul(x, t )+ O(h"). (1.18b)
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Thus at the end of the computation we have two sets of output data at our dis-
posal: (i) discrete values {v"} that approximate {i(x,, (y)} to O(h’) and (i} a
piecewise polynomial function of x, R(x;v"), that approximates u(x, t) to O{h").

Remark. 1.1. Note that (1.8) is quite different from the truncation error in 2
pointwise sense which is used in formulating Lax—Wendroff-type schemes [20, 21 7.
There we take v =u(x), t,) and require v/ *'=u(x,, L) O YY) To accom-
plish that we need a numerical flux that satisfies

_A(-fjl+l,v'2—f_‘/71v'2)= z —_—— + OB,

We shall see in the following that condition (1.8a) for the accuracy in a cell-average
sense is more manageable in many respects.

Remark 1.2. When e(x) fails to be Lipschitz continuous at a point, the local
truncation error (1.8b) is only O(4"). In the MUSCL-type schemes [22, 47 this hap-
pens at local extremum points; in higher order accurate schemes this may occur at
roots of higher derivatives of u (see [ 15, 11]). Due to local accumulation we expect
the pointwise error at time ¢, after N =/t time-steps, to be only O(k' ~!) at such
points. Away from these points we expect the pointwise cumulative error to remain
O(h"). Consequently the scheme is ( — 1)th order accurate in the maximum norm.
Because of the non-oscillatory nature of the schemes. we expect the number of
points where e(x) fails to be Lipschitz-continuous to remain bounded as # — 0. In
this case the L,-norm of the cumulative error is O(4"). To distinguish between
schemes that are rth order accurate in the usual pointwise sense, and those that are
rth order accurate in the L;-norm but only {r— 1)th accurate in the maximum
norm, we shall use “rth order accurate” for the latter, thus qualifying the difference
by the use of quotation marks.

Remark 1.3. It is well known that if the total variation of the numerical
approximation is uniformly bounded, i.e.,

TV(v,(-, 1)) < C- TV(uy), {1.19)

where the constant C is independent of % for 0<¢< T, then any refinement
sequence #— 0, T=0(h) has a subsequence that converges in LY to a weak
solution of (1.1). Therefore uniform boundedness of the total variation is an
appropriate sense of stability for numerical approximations to discontinuous
solutions of (1.1); see [9, 10] and the references cited there.

Inequality (1.13) shows that the total variation of our new schemes is dominated
by that of reconstruction step

TV("* Y < TV(R(-; v")).

-
i
@
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When R is the piecewise-constant function (1.11) or the piecewise-linear function
(1.12) (where the slope s, is that of the MUSCL scheme) then

TV(R(-;v)) < TV(v) (1.21a)

for any function v of bounded total variation. Consequently Godunov’s scheme and
the MUSCL scheme are total variation diminishing (TVD) in the scalar case

TV "ty < TV("); (1.21b)

this trivially implies (1.19) with C=1.

In proving relation (1.9c) for higher order reconstructions we have used the
assumption that for # sufficiently small there are at least r + 1 points of smoothness
between discontinuities. Consequently we cannot apply this result to the numerical
solution »". Nevertheless, based on heuristic analysis and extensive numerical
experimentation, we conjecture that in the scalar case

TV ) < TV(W") + O(h"+ ) (1.22)

for some p>0.

2. REVIEW AND OVERVIEW

In [15], the first paper of this series, we present a second-order accurate scheme
which is strictly non-oscillatory in the scalar case (m=1), i.e,

No(v"* 1) < No(v™), (21)

where Ny(v) denotes the number of local extreme in ». This scheme is a
modification of the “second-order accurate” MUSCL scheme [22,4], which is
total-variation-diminishing (TVD) in the scalar case, i.e.,

TV(e"+ ) < TV(0"). (2.2)

In order to enforce (2.2), the slope s, (1.12a) in the MUSCL scheme is subjected to
a so called “limiter.” Due to the operation of this limiter, the coefficient in the O(h)
term in the Taylor expansion (1.12b) becomes discontinuous at local extrema: Con-
sequently e(x) in (1.9a) fails to be Lipschitz continuous at such points, which leads
to a loss of accuracy at local extrema. In [15] this difficulty is circumvented by
using a modified slope s, in (1.12a) which satisfies

5, = wy(x,) + O(>), (2.3)

thus leading to a globally smooth e(x) in (1.9a).
Although the end result is a simple technical modification of the formula for the
slope s5,, the design of the scheme in [15] invokes major conceptual changes.
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Realizing that TVD schemes, independent of their particular form, are necessarily
only first-order accurate at local extrema, we seek a weaker notion of control over
possible growth of the total variation of the numerical solution. For this purpose
we introduce the notion of non-oscillatory schemes, which satisfy in the scalar case
for piecewise smooth w,

TV(E, (1) %) < TV(w)+ O(h?) (2.4)

rather than (2.2). In [16], the second paper in this series, we show that even the
notion of (strictly) non-oscillatory schemes (2.1) is too restrictive in the sense that is
limits the order of accuracy to 2. To enable the design of higher order accurate
schemes we then introduce the notion of essentially non-oscillatory schemes (1.13),
which excludes a Gibbs-like phenomenon but allows for the production of spuricus
osciilations on the level of the truncation error.

Another conceptual change is the removal of the “monotonicity limiters” which
are an essential part of TVD schemes [30] and may cause a reduction of the order
of accuracy at some points. Our new schemes are of uniform order of accuracy r.
The control over possible growth of the total variation of the numerical solution is
obtained by an adaptive stencil that at each point attempts to use the smoothest
information available. This adaptive selection of stencil is introduced to the
algorithm through the reconstruction step (l.14a). The number of points in the
stencil, independent of its orientation, is always (r+1).

In [16]. the second paper in the series, we investigate the stability of our new
schemes in the scalar constant coefficient case

[@4]

u,+au,=0, a = constant. {2.5a}

The exact evolution operator (1.2) in this case is just a translation with the constant
speed a. Therefore our schemes (1.14) take the particularly simple form

w+l_ D . . X
vt =R(x, —ar; v"). {2.5b

Due to the adaptive selection of stencil in the reconstruction step, the scheme
(1.23b) is highly nonlinear; consequently the use of the standard linear stability
analysis is inappropriate. We demonstrate this point in [16] by choosing initial
data for which the reconstruction algorithm selects a stencil that is biased :a the
“down-wind” direction {i.e., in the direction opposite to that of the wind}; a con-
stant choice of such a stencil is notoriously unstable. Such an instability usually
exhibits itself by the production of increasing oscillations which start at the highest
derivative and propagate to the function itself. The numerical experiment in [16]
shows that once these oscillations begin to appear on the level of the highest
derivative, the adaptive selection of stencil in (2.5b) reacts by changing the orien-
tation of the stencil and thus avoids the buildup of instability.

In [16] we also investigate the initial-boundary value problem (IBVP) for {2.5a).
Unlike the treatment of boundaries in standard finite-difference schemes we do not
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use “numerical boundary conditions.” Instead we modify the scheme (2.5b) by
restricting the selection of the stencil to available information. As a result the
scheme is biased “against the wind” at one of the two boundaries. Nevertheless,
numerical experiments show the scheme to be strongly stable.

In the present paper, the third in the series, we turn to consider the general non-
linear case. The abstract form of our schemes, (1.10) and (1.14), call for the
evaluation of the exact solution in the small (ie., for 0< <1, t small) of the IVP
(1.1) with the initial data R(x; v"); the latter is a piecewise polynomial function of x
with possible discontinuities at {x,,,}.

When R(x; v") is the piecewise-constant function (1.11) (i.e., Godunov’s scheme),
we can express this solution in terms of local solutions to the Riemann problem
vy x<0

u,+ fu),=0, u(x, O)={ (2.7)

vty x>0

When R(x;v") is a piecewise polynomial function of higher degree we cannot in
general express the solution of the IVP (1.1) in a simple closed form. Nevertheless,
(see [1, 6]) we can obtain a local Taylor expansion of the solution to any desired
order of accuracy.

We note, however, that the step of “solution-in-the-small” (1.14b) is followed by
the step of “cell-averaging” (1.14c). Consequently many of the fine details of the
exact solution, which may be very costly to compute, are later ignored in evaluating
vt ! by averaging the exact solution over (x, _,,, X, 1,2). To economize on the cost
of our schemes it makes sense to use simplified approximate “solvers” that carry
only this information which determines the value of the cell average, namely the
one needed to compute a numerical flux satisfying (1.17c). The study of such
approximate solvers is a main issue of the present paper. In Section 4 we consider
the scalar case; in Section 5 we extend the scheme to hyperbolic systems of conser-
vation laws.

When we consider the reconstruction (1.9) in the context of approximation of
functions, the assumption that w(x) is piecewise smooth with a finite number of dis-
continuities implies that for 4 sufficiently small there are at least (r+ 1) points of
smoothness separating discontinuities on the computational grid. Therefore at any
point of smoothness it is possible to select a stencil from the smooth part of the
function. Although the x behavior of weak solutions of (1.1) is generically of this
type, their time dependence allows for collision of discontinuities, as well as their
collision with a boundary, e.g., solid walls. For points in a region between two dis-
continuities that are about to collide, no matter how small 4 is, there must come a
time when there are not enough points to select a stencil of (r + 1) points from the
region of smoothness. Consequently, a component-wise extension of the scalar
reconstruction algorithm in [16] to vector functions may produce large spurious
oscillations during this brief encounter.

The elimination of such spurious oscillations has been a major consideration in
designing the extension of our scalar schemes to systems of conservation laws. In
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Section 5 we show that this can be accomplished to a great extent by extending the
scalar reconstruction algorithms to systems via the use of locally defined charac-
teristic variables.

In Section 6 we describe in detail the algorithm for the solution of the Euler
equations of gas dynamics. In Section 7 we present some numerical experiments.

In future papers we shall present the extension of these schemes to two-dimen-
sional problems and study the dependence of the computational efficiency on the
order of accuracy of the scheme.

3. RECONSTRUCTION

In this section we present a brief description of the reconstruction R(x; w) to be
used in (1.14a); we refer the reader to [16, 11, 17] for more details and analysis.
For this purpose we introduce H,(x; w), a piecewise polynomial function of x that
interpolates w at the points {x,}, ie.,

H, (x;;w)=w(x,). (3.1a)
H,(x;w)=q,, , 12(x;w) for x,<x<x, . {3.1b)

where ¢q,, . 1, is a polynomial in x of degree m.

We take ¢,, ,, 1,» to be the (unique) mth degree polynomial that interpolates w{x)
at the (m + 1) successive points {x,}, i,(j) <i<i,(j}+ m, that include x, and x,__,.
ie.,

qm.]+l‘2(x1; W)=W(X,) for lm(.])glglm(l)_é_rn {323}
1—m<i,(j)—j<O. (3.2b)

Clearly there are exactly m such polynomials corresponding to the m different
choices of i,,( ) subject to (3.2b). This freedom is used to assign to (x, x,, ;) a sten-
cil of (m+ 1) points (3.2) so that w(x) is “smoothest” in (x; . X, ()4 ,) it sOME
asymptotic sense.

The information about smoothness of w(x) is extracted from a table of divided
differences of w. The latter can be defined recursively by

f\
[
Lo
®

wlx, J=w(x,)
WEX s X d = 000y e X D= W X I (X — X)) (3.3D)

It is well known that if wis C in [x,, x,, ] then

1 d .
W[x,,..., xl+k]zﬁa}'w(€z.k)’ ngql,kgx

PR
1T K
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However if w has a jump discontinuity in the pth derivative in this interval,
0< p<k, then

WX o Xy ] = O(h 5 P[w(P]); (3.3d)

here [w'”'] denotes the jump in the pth derivative. Equations (3.3c)-(3.3d) show
that |w[x,,.... x,, ]| provides an asymptotic measure of the smoothness of w in
(x,, x;, ), in the sense that if w is smooth in (x,, x,,,) but is discontinuous in
(x,,, X, 4 ), then for A sufficiently small {w[x; ..., x, , ]| <[w[X,,..., X;  (]]. Hence
the problem of choosing a stencil of points for which w is “smoothest” is basically
the same as that of finding an interval in which w has the “smallest divided differen-
ces” (see [ 16, 11] for more details).

In [11] we propose the following recursive algorithm to evaluate i,,(j). We start
by setting

L(J)=J, (3.4a)

ie., q, 4, is the first-degree polynomial interpolating w at x, and x,, ,. Let us
assume that we have already defined i,(/), i.e., g, . ,,» is the kth degree polynomial
interpolating w at

Xl gyeees Xig(y) + ke

We consider now as candidates for g, , ., ;» the two (k + 1)th degree polynomials
obtained by adding to the above stencil the neighboring point to the left or the one
to the right; this corresponds to setting i, ;(j) =i (j)—1 or i, ,(j)=1i.{J), respec-
tively. We choose the one that gives a (k+ 1)th order divided difference that is
smaller in absolute value, ie.,

i) = {lk(]) —1 i |W[xzuj)~l,---a xtk(/)+k]l < |W[xuma--, Xy +k+ l (3.4b)

i{J) otherwise.

In [16] we analyze this interpolation technique for a piecewise smooth function
w and show that:

(i) wherever w(x) is smooth

d* d*
o) = , m+1-k <k < m-
G H, (x;w) pa w(x)+ O(h ), 0<k<m; (3.5a)

(ii) H,(x;w) is an essentially non-oscillatory interpolation of w in the sense
that

TV(H,(; w)) < TV(w)+ O(h™+1). (3.5b)

We turn now to describe two different techniques to solve the reconstruction

problem (1.9) in terms of interpolation. (See Appendix for an algorithmic descrip-
tion.)
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(1) Reconstruction via a Primitive Function

Given cell averages w, of a piecewise smooth function w

_ 1 o2 .
H‘_/:IT W(J") dy’ hj:xﬁ—l«z_x;fl':’ {30}
77X 12

we can immediately evaluate the point values of the primitive function Wix}

Wix)= [ wr)dy (3.72)

by

Since

w(x)z;% W{x)

we apply interpolation to the point values (3.7b) of the primitive function Wix)
{3.7a) and then obtain an approximation to u{x) by defining

R(x; w) =§ H (x; W) {3.8)
x

We note that this procedure does not require uniformity of the mesh.
The primitive function W(x) is one derivative smoother than wi(x). therefore it
follows from (3.5a) that wherever W(x) is smooth

L4 ke

d d
S x: — V(- r+1—-k :
PN H.(x; W) e Wix)+ Olh )

thus we get from the definition (3.8) that

d o d

— R(x; w):d—lw(x)+0(h"’). (3.9)
X

which implies (1.9a) for [=0.
The conservation property of the reconstruction {1.9b) follows immediately from
the definition (3.8):

PXp L2 _ 1 i i
| RGa Y dx= o LH(x, 0 W)= H(x, 13 )]

1
hj Xj-12 ]

1 . .-
= LV ) = WAx, ) T=05 {310}

J
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The non-oscillatory nature of the reconstruction (1.9¢) follows primarily from the
non-oscillatory nature of the interpolation (3.5b), see [16].
We denote the reconstruction via the primitive function (3.8) by RP.

(2) Reconstruction via Deconvolution

We assume that the mesh is uniform and consider the given cell averages w, to be
point values of w(x), the globally defined sliding-average function (1.3) of w, i.e.,

w;=w(x,), (3.11a)

where

B h2
w(x):zf wlxy)dy. (3.11b)

Expanding w{x+ y) in (3.11b) around y =0, we get

xR %] 0
i)=Y ¥ ‘(") j yedy=Y b w(x), (3.12a)
k=0 k! —h/2 k=0
where
0 k odd
ke {Zk/(k +1)!  keven. (3.120)

Multiplying both sides of (3.12a) by A'd'/dx’ and then truncating the expansion in
the RHS at O(h"), we get

r—I{—1
wO(x)=Y a T 0(x)+OR). (3.13a)
k=0

Writing the relations (3.13a) for /=0,..., r— 1 in a matrix form, we obtain

(1 0 ay, 0 oy oz,_ﬂ
() RN ()
Aw'(x) oy ' (x)
W (x) = Ce 0 h2w"(x) + O(h").
: .. 0y .
B = D) 0 Bt V(x)
Lo o

(3.13b)

Let us denote the coefficient matrix in the RHS of (3.13b) by C. This matrix s
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upper triangular and diagonally dominant. Multiplying both sides of {3.13b} by
C ! from the left we get

w(x) w(x)
Anw'(x) o Av{x) ,
=C . + O, (3.13¢
B (x) A A )

Given w, we interpolate w(x) by H,,(x; w) with m=r —1 Since w(x) is smoother
than w(x) it follows from (3.5a) that

k k

d '
P H,(x;w) = F w(x)+ O(hm 1%

wherever w(x) is smooth. We note that although H,, is only continuous at x,. the
one-sided derivatives at x,+ 0 do satisfy the above relations, ie.,

dk - dk - i+ -k
ZIHm(xliO’ W)Zd—x; H'(_’('})—{“O(h ). (314}
Next we define
Dy, =, {3.15a}
_ o d o d I S
D, =h'M i H,(x,—0;w). o H,(x,+0: w}’ {3.15b)

for 1</I<r—1. (3.15b)
where M(x, v} is the min mod function

s-min(|x|, [ ¥]) if sgn{x)=sgn(vi=s

Mix, y):{ (3.16)

0 otherwise.
Clearly
D, ,=hWw"(x)+ O {(3.17a)

using D,= (D, ,,... D, _,,)" to approximate the vector, on the RHS of (3.13c} we
get that

D,=C'D

, , {3.17b)

satisfies

D, = (w(x,), AW (X))o B” T~ D)) O (3.17¢)

5817122



246 HARTEN ET AL.

Finally we define
r—1 1
R(x; w)= Z FDk,j[(x—xj)/h]" for [x—x;| <h/2. (3.18)
k=0""

We note that since C is upper triangular D,, in (3.17b) can be computed by
back-substitution, i.e., we set

D, =D, , (3.19a)
and then compute for k=+r—2,..,0
_ r—1
Dy,=Dy,— ) D, (3.19b)
I=k+1

It follows immediately from the definition (3.18) and the relations (3.17a) that
wherever w(x) is smooth

! !

d
Tx’R(X; W)z;)—(—, w(x)+ O(h™"); (3.20)

this for /=0 implies (1.9a). The conservation property of the reconstruction (1.9b)
follows from

1 Jh/z R(x+ y: ) dy = ril Dk,j 1 ra2 K dveD r-1 b
7o X+ yiw) }‘_k=o—k!—thth,«z ydy= 0‘j+k§l Dy,
=Dy, =¥, (3.21)

The last two equalities in (3.21) follow from (3.19b) with k=0 and (3.15a).
The non-oscillatory nature of the reconstruction (1.9¢) follows primarily from the
non-oscillatory nature of the interpolation H,,(x; w); see [ 16] for more details.
We note that w(x) is the convolution of w(x) with ¥,{(x), the characteristic
function of a cell, ie.,

w(x)=(w=*y,)(x) (3.22a)
_{ln for [x| <h/2.
Valx) = {0 for |x|>h/2 (3.220)

Hence (3.13c) is actually a deconvolution to O(%"). Therefore we refer to (3.18) as
reconstruction via deconvolution and denote it by RD.

Remark 3.1. We note that for RP with m=r and RD with m=r—1 the coef-
ficient e(x) of 2" in the reconstruction error (1.9a) is discontinuous at points where
there is a change of orientation in the stencil of the associated interpolation; this
may happen at critical points of the function and its derivatives. Hence the resulting
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schemes (1.14) are “rth order accurate” (See Remark 1.4). On the other hand, RD
with m=r yield e(x) which is globally Lipschitz continuous, thus resulting in
schemes that are rth order accurate in a pointwise sense. This follows from the fact
that (3.17a) is upgraded to

D, =hw(x)+ 0 ") {3.23}
which has the effect of pushing the non-smoothness due to the change of stencil
orientation in the associated interpolation to the O(h" ') level.

Remark 3.2. We note that both RD with #+=2, m=1 and RP with r=2 are
piecewise linear reconstructions of the form (1.12). The slope s, for RD is identical

o | L w oy

o

o Lot o SN

same as that of RD except at local extrema, where 5, =0 for RD while for RP

. )(w[xj, X 1] if (wix,x Jl<iwlx,_,, x]1l

/7 wlx,_,.x,]  otherwise.

W
[
B
e

Although RP does not “chop” local extrema as RD, the lack of smoothness in
(3.24) results in the same loss of accuracy at local extrema.

We note that RD with m =r =2 is essentially the same reconstruction that gives
the non-oscillatory second-order accurate scheme of [15].

4. ScALAR CONSERVATION LAwS

The abstract form of our scheme calls in (1.14b) for the evaluation of the exact
solution in the small of the IVP (1.1) with the initial data R{x;v"). This step 1s
followed by the cell-averaging operation in {1.14cj which results in the conservation
form (1.16). Thus we are spared the task of having to compute a global sclution.
All we need to do is evaluate

1 re
f1+1v2=‘j f(”h(/;+1z,[,z+’i)) dn.
L]

o

4.1}

To simplify our notation let us denote v,(x, 1, +¢) by v(x, ¢). Thus v(x, ¢} s the
solution of

v, + f(r),=0 {4.2a)

with the piecewise-polynomial initial data

r—1
v(x, 0)=R(x;0")= Y b;(x—x)/I! for x,_,,<x<x,,,, 142b)
=0

in the time strip —o <x< o, 011, 7 small
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The solution vu(x,?), for sufficiently small 7, is composed of sections of
smoothness separated by “fans” that emerge from the discontinuities at {x,, ,}.
We use here the term “fan” loosely, allowing a “fan” with zero spread which is just
a curve. In the linear case discontinuities propagate along characteristic curves; in
this case all the “fans” are just curves. In the nonlinear case the “fans” with zero
spread are shock curves, while “fans” with positive spread are rarefaction fans—or
possibly a succession of rarefaction fans separated by contact shocks in the case of
nonconvex flux. We denote by v,(x, r) the section of smoothness of v(x. ¢) that is
connected to the polynomial data in (x,_,,, X, ;,»)-

A global description of v(x, ) can be quite complicated. Fortunately all we need
i$ (X, 12, t) for small ¢, which can be easily described in terms of v (x, t), v, (x, t)
and the “fan” eminating from x=x,,,, at 1=0 as follows: If for />0 the “fan”
stays to the right of x=1x,, . then v(.x,, (1, ) =0v,(X;, 1,2, 1): if this “fan” stays to
the left of x=x,, |, then v(x,, 1, 1)=v,, (X, 1,5, t); i the “fan” covers x =x, , ; 5,
then v(x,, 5, t) =constant = V(0; v)(x, , 1.5, 0), v,, ,(x,, 1,0)). Here V{(x/t; u;, ug)
denotes the self-similar solution of the Riemann problem

Uy x<0

Ug x>0, (43)

u,+ f(u),=0, u(x,O)z{

with constant u; and uy. We note that the “fan” covers x = x;, ;,, only when it con-
tains a sonic centered rarefaction wave (i.e., one that includes a peint for which
f=0); this wave retains its self-similar form as long as it does not interact with
shocks. Therefore if we choose ¢ sufficiently small so that no shock crosses
x=x,,,, for 0 <1<, we can express f(v(x,, .2, 1)) by

f‘(v(x/+1/2’ t))
S (x, 41,2, 1) “fan” stays to the right of x=x,, , »
= fRux, 11,000, 1(X, 4 1,2, 0)) “fan” covers X =Xx,, ;5.
S, 40X, 10, 1) “fan” stays to the left of x =x, ;1 »

(4.4)

Here f® denotes the flux at x =0 of the solution to the Riemann problem (4.3), i.e.,
SRy, ua) = f(V(0; 4y, uy)); (4.5)

using the formula in [237] it can be expressed by

(min,, <, <., fu) if u <u,

R = 4.6
f (ul’ “_) imaxul>u>u:f(u) if Uy >u,. ( a)

When f(u) is a convex function of , ie., f"(u) >0, f(u) may have only a single local
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extremum which is a minimum; let us denote its location by «,. Using this fact i
(4.6a) we can express f®(u,. u,) in the convex case by

fluy) it u <u, <u,
flw,) i uy<u,<u,
Ruu)={( fluy)  fu,<u,<u, (4.6h)
Sfluy) if  u,>uyand a(u;, u,) >0
fun) if u,>u,and a(u,. u,)<0.
Here
a(uy, uy)= [ flu) — flu) J 1w, —uy) 14.7)

is the speed of the shock with u; =u, and ug =wu, in (4.3). We remark that (4.4} is
deliberately formulated in terms of f(v(x,, , ., t)) rather than v(x,, , ,, f) in order te
remove ambiguity in the definition when v is discontinuous at x,,,,. The con-
tinuity of f(v) in this case follows from the Rankine—Hugoniot relation for a
stationary shock.

We turn now to derive a simple but adequatec approximation to the numerical
flux (4.1), which 1s

ot

Lo
== | fletx, (48)

TJ0

J+12

with the integrand given by (4.4). Note that the integrand is a smooth function of 1.
The first step is to discretize the integral in (4.8) by using a numerical quadrature

nr

1
;J glr)yde= Z a, glBeTy+ 0T ): (4.9)

A=0

thus

The second step is to approximate v (x, 1) in (4.4) by its Taylor expansion which
1s obtained by the following local Cauchy—Kowalewski procedure. We start by
expressing é'v(x, 0)/0x’ at x, by

dv(x,,0) (b, for 0<ig<r—-1
ik \a LA bl (.11
ox! {0 for I=r. (h1ia)
Next we use (4.11a) to evaluate
& N
— (x,,0) forall/land 0 <k </ (4.11b)

oxk oy
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by taking derivatives of the partial differential equation (1.la) in the following
ordered way

—f'v,
o= —[f"(0)* + 0. ]

Vi = —[f”v,vx+f Ve ]
Ve = —[f"(0) +31"0 D+ [0 ] (4.11c)
Ve = —Lf" (0 )0, 4+ [ (200 + 0,0, )+ f0,,]

V= —Lf" (W) 0+ f (20,00 +00,) + 0]

etc.,

<
S
I

and then compute (4.11b) by successively evaluating the RHS of (4.11¢); note that
this procedure always uses known values which are either initially given by (4.11a)
or previously computed in the algorithm (4.11c). We observe that

d'v(x, x—x )& -k
,20 kzoax"az’ £ 2 kgj) (=K (4.12a)

satisfies
0x, 0)=1v,(x,0)=0(x,0) for x,_,,<x<x,,1n, (4.12b)

and that
b(x, t)=wv,(x, 1)+ O(h"), (4.12¢)

wherever v(x, ) is well defined.
The last step in our derivation of the numerical flux is to approximate

f(u(xj+1,v2, [)) in (44) by
J@(X, 112, 1) sz(ﬁj(xj+ 125 8y D, (X 4125 1)) (4.13)

where f® is (4.5)-(4.6). The resulting numerical scheme is

U;1+1:U;l_l(f;-f—l’z_fj‘—lvz) (4.14a)

LS

f;+l,’2: Z akf (U j+l27 .BkT)a ]+I(xj+l’7’ ﬂkf) (414b)

k=0

In the following we show that the numerical flux f,_,, in (4.14b) is an adequate
approximation to the “abstract numerical flux” (4.1).
We start by proving that the scheme (4.14) is rth order accurate in the sense of



HIGH ORDER ACCURATE SCHEMES. H!I 253

(1.8). To do so we take in (4.14) v/ =u(x,, ¢,), where u(x, 1) is a smooth (either
globally or locally) solution of (1.1) and show that

i e
Frora=7 | S(X, 150 6 m) dy -+ OR) (4.15)
When we apply the reconstruction R to @” we get (3.9) and (3.20) that

d* o*
— R ") == ulx, 1,) + O(h" %) for O<hk<gr—1. (4.16a)
dx dox

Consequently it follows from the Cauchy—Kowalewski procedure (4.11)-(4.12) and
= O(h) that

TAX, 410, ) =ulX, g, 1, + 1)+ O for i=j j+1. {4.16b)

f®(u,, uy) is Lipschitz-continuous with respect to u, and u,, and it 1s consistent
with f(u) in the sense that f®(u, ) = f(«); therefore

FRuy, uy) = flu)+ Oy —u | + lu— 1) (4.16¢)
Applying (4.16c) to (4.16b) we get that

SO, ey 08,5 (4 e D)= flulx, )5, L+ D)+ O(Y). (4.16d)

Finally using the assumed smoothness of u(x, {) and the order of accuracy of the
numerical quadrature (4.9) we obtain (4.15).
Next we consider the constant coefficient case

v,+av,=0, a = constant. {4.172)
Here the “fan™ in (4.4) is the characteristic line
X, 20)=x, 1, +at 14.17b)
and
vix, r)=vlx—at,0)=R(x —at; ") for x,_ (0 <x<x,, .t} 417}
Since v/{x, t) in (4.17c) is a polynomial of degree r — 1 in (x —ar) we get that

o

X

this implies in (4.11)-(4.12) that

dix.ry=vix, t). {3.18a}
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Hence
SROAX, 4120 1D B, 1(X, 4 100 D) = f(0(X, 4 10, 1)), (4.18b)

Since the numerical quadrature (4.9) is exact for polynomials of degree r — 1 we get
that the numerical flux f,, ,, (4.14b) is identical to (4.8). It follows then that the
numerical scheme (4.14) in the constant coefficient case is the “abstract scheme”
(1.14), (1.16), ie

v+ = R(x, —at; v"). (4.18¢)

We observe that since the “fans” in the solution v(x, ¢) in the constant coefficient
case have zero spread, the evaluation of f(v(x,, ,?)) in (44) involves only the
smooth parts of the solution v,(x, t). The “fans” in the numerical approximation
mark the domain of validity of the Taylor expansions ¥ (x, ¢). Therefore the only
role of the Riemann solver in the formulation of the numerical flux (4.14b)

f(—(Y,+12,[)) if a>0

4.1
16,600 t))if a<0o M)

f' (f( /+12,[)’5/+I( J+ 120 ))_{

is to serve as a pointer, ic., to identify whether x=x, , , falls into the domain of
validity of #, or into that of & Byt Since ,(x, 1, 2, 1) =v(X, ;2 —at, 0), the use of the
Cauchy- Kowalsk1 procedure is equivalent to that of a characteristic method that
traces the characteristic curve through (x,, ., ¢) to the initial data.

Next we consider the scalar IVP (1.1) with convex f(u) and smooth initial data
uy(x) and we show that the above interpretation of the numerical approximations
applies to this nonlinear case as well. The numerical solution v7 = i#(x,, t,) typically
forms a monotone transition of 1-2 points across shocks and stays close to i(x,, t,)
in the smooth parts of the solution (see the numerical experiments with u, + uu, =0
and u(x, 0)=sin nx in Sect. 7). Let us now examine the discontinuities of R{x; v”)
at {x;,,»} and the nature of the “fans” emanating from these points. Relation
(4.16b) with =0 shows that the jump at x,, , in the smooth part of the solution
is of the order of the local error, say O(/4”) with 0 < p <r. Hence the “fan” emerging
from x,, ,, in a region of smoothness is either a shock curve or a rarefaction fan
with O(h?) spread. On the other hand, in the vicinity of shocks of u(x, t,) the side
of this jump is O(1); however, the “fan” is necessarily a shock curve. We see
therefore that the global picture is very similar to that of the constant coefficient
case, i.e., the “fans” separating {v,(x, r)} are either shock curves with zero spread or
rarefactlon fans with O(h? ) spread (these can be thought of as blurred charac-

to 1 + thace . a the haund oc_n ho JataaREs a) ralid a ho

O{t") from that obtained by solving the nonlinear characteristic relation for v

v=R(x,, 1, —a(v)t;v"). (4.20)
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Hence the use of the local Cauchy-Kowalewski procedure is again computationally
equivalent to tracing the characteristic curve through (x, . ?) to the initial data.
Since the evaluation of f{v(x,, ., t)) in (4.4) essentially involves only #(x,,, ., 1)
and ¥, ,(x,, 2, t), the role of the Riemann solver in the numerical flux {4.14b) is
again that of a pointer, ie, to identify to which domain of validity x==x,, -
belongs. This indicates that the monotonicity of the exact solution operator is
approximately preserved by our procedure. See C1 in Section 7. This also suggests
that f® in (4.14b) can be adequately replaced by the simpler expression f¥°F which
corresponds to Roe’s approximate solution of the Riemann problem (see [25, 147

FRO%uy, uy) =30 fuy) + flu) — |atuy, ua)l (uy—u,)]

_ {ftuwy) il aluy.1u,)>0
T fuy) if atu,, u,) <0,

:L\
3]
e

where a(u,, u,) is defined by (4.7). Observe that fR°F 1n (4.21) satisfies (4.16¢) and
therefore the modified scheme remains rth order accurate.

The heuristic analysis presented above is applicable only when all the discon-
tinuities in the solution to the IVP (1.1) are shocks; discontinuities that are not
shocks may be present in the solution cither by being introduced through the initial
data uy(x) or as a result of a shock—shock interaction in the non-convex case.
Clearly f*©F in its form (4.21a) should not be used when the solution contains a
sonic rarefaction wave since it admits any discontinuity with a(u,, ug)=0 as a
stationary solution. This problem is well known and there are many ways to over-
come it (see [13, 26, 9], and Sect. 7).

In Section 7 we present numerical experiments testing the performance of tne
scheme {4.14) in the solution of the Riemann IVP (4.3}, where f(u) is non-convex
and a(u,, uz)=0. In all these experiments, as well as in others not reported here,
we have found the scheme to develop the correct structure of the solution.

5. SYSTEMS OF CONSERVATION LAWS

In this section we extend the reconstruction algorithm of Section 3 and the
solution-in-the-small procedure of Section 4 to the case of hyperbolic systems of
conservation laws.

As always we are interested only in “computable” sclutions and therefore assume
that the initial data ug(x) in (1.1b) are such that u(x, r), which is a vector function
of m components u = (u,,.., u,,)’, is, at any given ¢ a piecewise smooth function of x
with a finite number of discontinuities. Given cell averages i/ =u(x,, 1,), it seems
natural from the point of view of approximation theory to reconstruct u(x, f,} by
applying the scalar reconstruction R to each of the scalar component &}, 1e,

R(x; #") = (R((x; #}),.... R(x; a2 )7,

e
W
.
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here R denotes vector reconstruction. However, componentwise reconstruction
seems natural only if we disregard the time-dependence of u(x, t) which allows
discontinuities in the solution to collide with each other.

We recall that the scalar reconstruction is non-oscillatory only if discontinuities
are separated by at least r+ 1 points of smoothness, where r is the order of
accuracy. Consequently the component-by-component reconstruction (5.1) may
cease to be non-oscillatory around the discrete set of points (x,, 7,), where discon-
tinuities of u(x, r) interact. In the following we describe an algorithm to reconstruct
u(x, t,) from " which avoids this difficulty by decomposing %" which avoids this
difficulty by decomposing #" into m locally defined scalar characteristic variables.

We start by examining the constant coefficient case f(u)= Au, where 4 is a
constant # X m matrix

u,+ Au,=0 (5.2a)
u(x, 0) =uo(x). (5.2b)

We note that the eigenvalues {a, } as well as the eigenvectors {r;}, {/,} are also
constant. We assume that

a,<a,< - <a, (5.3a)
Lir,=4,. (5.3b)
We define the kth characteristic variable w* by
wk=1,u. (5.4a)

It follows then from (5.3b) that
u= Yy wr. (5.4b)
k=1

Multiplying (5.2) from the left by /, we see that w*(x, t) satisfies the following
scalar [VP

(W), + a (W), =0 (5.5a)
wk(w, 0) = [ ug(x) = wh(x), (5.5b)

the solution to which is
w!(x, 1) = whk(x — at). (5.5¢)

Using (5.4b) and (5.5c) we can express the solution u(x, z) of the constant coef-
ficient IVP (5.2) by

u(x, 1)=>Y wh(x —a,1) ry.



i~
[V
h

HIGH ORDER ACCURATE SCHEMES, 11

Let us now consider the following initial data in (5.2b)

Uy X <Xg

{ £ Y

HolX) = { Uy XL <x<xp {S.6a;
Ug Xg < X.

First let us consider the case x; =xz =0 which is the Riemann IVP (4.3}. The
solution u(x, 1) is a self-similar solution V(x/r; u, . ug) of the following form

s up x/t<a,
u(x, t)y=V{x/t;uy, ug)={ u* a <x/t<a,,,, 1<ks<m—1 (5.6b)
( ug a,, <X,
where
k
uW=u + Y (wp—wi)r, 1<k<sm—1. (5.6¢}

=1

In the case xi > x| in (5.6a) the solution u(x, 7), for r small, is

X=Xy
V( . ;uL.uM) for x<x_ +a,1

/

ulx, th= < uy for x;,4+a,r<x<xg+a,r  (5.6d)

X —Xg
|14 p S, Up for xp+ar<x.

As 1 increases, the discontinuity in the kth characteristic field originating at x = x;
will eventually collide with any discontinuity in the /th field, /=1....k—1
originating at x = xy.

The example (5.6) demonstrates the difficulty encountered in using the com-
ponentwise reconstruction (5.1). We may get oscillations for small ¢ in both {5.6b)
and (5.6d) since the discontinuities are too close due to the self-similar nature of the
solution to the Riemann problem. Later on we may get more oscillations in {5.6d)
as discontinuities collide.

We observe that there are no such problems with w*(x, 1)=wk(x —a,r).
Therefore it makes sense to use the scalar reconstrution R(x:*) to define

L
~d
©

R{x:@)= Y R(x;#*)r,.
K=1

where

Wt =1 0. (3.7
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We gencralize (5.7) to the nonlinear system case by using locally defined charac-
teristic variables. To reconstruct u from # in (x,_, X, ;,») we define

m

R(x;a)= Y, R(x;w*(@))ri(@)  for x

j~l,’2<x<x_/+1/27 (583)
k=1

where the mesh function w*(i,) = {W¥(&,)} is defined by
W(@) =) d, ~ for j—p<i<j+p: (5.8b)

here p is the desired order of reconstruction.

In Section 7 we present calculations for the Euler equations of gas dynamics with
the initial data (5.6a). The results of these calculations (as well as those of shocks
reflecting from a wall) demonstrate that the reconstruction (5.8) works well also in
the nonlinear case.

We turn now to describe our scheme in the case of byperbolic systems of conser-
vation laws. This scheme is identical in form to (4.14):

L’7+l:v7—’1(f_/+l2_fj~12) (5.9a)
- k’
f;+l := Z L-ka‘R(E/(’\-/Jf1 25 ﬂkr)’ ﬁj+l(’x/+l'2’ ﬂkr))' (59b)
k=0

The derivation of (5.9), although different in some details, is basically the same as
the one presented in Section 4 for the scalar case. Rather than repeating ourselves
we shall use the formulae of Section 4 (which are to be interpreted here in a vector
sense), and point out the differences whenever they do exist.

The problem to be solved in the “solution-in-the-small” step of the algorithm
(1.14b) is as before (4.2). The general structure of the solution v(x, ¢} is similar to
that of the scalar case, ie., it is composed of sections of smoothness separated by
“fans” emanating from the discontinuities at {x,, ,,}. As in the scalar case we can
use a local Cauchy-Kowalewski procedure to approximate v,(x, f), the section of
smoothness of v(x, ) that is connected to the polynomial initial data in
(X, 120 X, 12), by #(x, ¢) in (4.12) to any desired order of accuracy. Since f(u) is
now a vector, f'(u) is a matrix, f"(u) is a tensor, and so on; consequently, (4.11c)
has to be replaced by a much more complicated expression. Rather than doing this
we shall present an algorithm in Section 6 to carry out the Cauchy-Kowalewski
procedure in the specific case of the Euler equations for gas dynamics.

Next we consider the “fan” that emanates from the discontinuity at x,, ,,,. As in
the scalar case this “fan” starts at =0 as a self-similar solution to the Riemann
problem (4.3), which in the system case is a packet of m fans corresponding to the
different characteristic fields. A major difference from the scalar case is that (except
when the initial data in (4.2b) are piecewise constant) the “fan” emerging from
X, .1, at r=0 immediately loses its self-similar nature. Therefore it is no longer
possible to express v(.x,, ;, t) in a simple closed form as we did in (4.4). However
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v(x,, 2, 1) can be expressed to any desired order of accuracy via a local Tayior
expansion of the various curves in the “fan” and the states in beiween (We refer the
interested reader to [ 1] where Ben-Artzi and Falcowitz describe such an expansion
for the Euler equations of gas dynamics.) Thus as in the scalar case, although at
considerably more cffort, it is possible to obtain an explicit expression that
approximates the “abstract numerical flux™ {4.8) to any desired order of accuracy

We turn now to show that the numerical scheme (5.9) is an adequate
approximation to the “abstract scheme™ (1.16). First we observe that relations
{4.16} hold also for the system case; therefore (4.15} follows in exactly the same way
as in the scalar case and consequently the scheme (5.9} is likewise rth order
accurate.

Next we consider the scheme in the constant coefficient case {35.2). Since both the

11l P S N PR & -4 o WD RN PR-pars s comndaa waloal ' R IR RPN

(4.17)-(4.18) that the numerical flux (5.9b) is exact and that the numerical scheme
(5.9} is identical to the "abstract scheme” (1.16). Let us examine now the structure
of the solution t(x, 1): The “fan” emanating from x,, | , has the same form as {5.6b}
except that u ., u*, and ug are now functions of x and 7. The section of smoothness
X,y a2ta,r<x<x,, -+atis also the domain of validity of the Taylor expan-
sion (x.¢). We note, however. that [.i,(x.r), which is the Tavlor expansion of
w¥(x, ). is valid in the larger domain x, |, +a,f<x<x,  .+a,7 Next let us
examine the role of /® in formulating the numerical flux {5.9b):

SREA 0 0, B (X, a0t Z(ak TLTAN e D

+ 2@ LLT, ol ) (501085

=~

where

(a.)* =max(0, a,), (a,) - =min(0, a). {5.10b)

We see from (5.10) that as in the scalar case the role of /® is that of a pointer. ie
to identify for each characteristic variable w* =/, v to which domain of validity of
{17} does x=x, ,, belong. Since I,5,(x,, ., 1)=10(x,, ,—a,r0), the use of
Cauchy—Kowalewskl procedure in this procedure in this fashion is again com-
putationally equivalent to that of a characteristic method.

In the following we argue that except for the discrete set {(x,,: )} of interac-
tions, the above interpretation can be applied to the nonlinear case as well. Unlike
the scalar case we do not consider in this paper the “non-convex case” for systems
and assume that each characteristic field is either genuinely nonlinear or linearly
degenerate (see [19]). When we consider the IVP (4.2} in the context of the
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numerical scheme where v(x, 0)= R(x;v") we see that the “fans” in the solution
v(x, t) are related to the global structure of u(x,t,) in the following way (see
Figs. 14 and 16): When u(x, t,) is smooth, the “fan” has the basic structure of the
constant coefficient case linearized around u(x, ., t,), except that the k waves
may have a spread of O(h”). When x|, is in the vicinity of a shock of u(x, 7,), the
“fan” is essentially a shock wave with small perturbations in the other fields. We see
that typically (excluding interactions) the “fan” eminating from x ,,, in the
solution v{x, r) is degenerate in the sense that except possibly for a single large
shock (or a contact discontinuity) all the waves in it are weak. This heuristic
analysis suggests that f(v(x,, ,t)) can be adequately approximated by a local
Roe’s linearization; this linearization is exact for a single shock or a contact-discon-
tinuity and amounts to a characteristic approximation for weak waves.

As in the scalar case, fR°F is obtained by a local linearization with respect to a
particular average i = u(uy, ug) for which

Slug) = fluy) = A(id)(ug —up). (5.11a)

SROE is defined as the flux at x=0 of the solution to the constant coefficient
Riemann 1VP:

u,+ A(d) 1, =0
o Jjur x<0
ulx. 0)= {uR x>0,

which can be expressed as

3

fROE(”L»“R)Z%[f(“LH'f(“R Z Oty , ug) |W(”)|"k(”)] (5.11b)

where
Opluy, ug)=L(@)(ug —ur); (5.11¢c)

here a, (i), {.(4), and r (@) are evaluated with respect to the Jacobian matrix A(#).
The derivation of Roe’s Riemann solver is well documented in the literature (see
[25,8,9,14]). In Section6 we describe f®°F for the Euler equations of gas
dynamics.

Finally let us examine the performance of the scheme (5.9) during an interaction
of discontinuities in the solution u(x, ¢) of the IVP (1.1). We observe that it takes
some time until the outcoming waves can be properly described on the com-
putational grid. Till then R(x;v"), which is based on polynomial interpolation, can
only be a crude approximation to u(x, r,). Under these circumstances we expect the
“fans” in the solution v(x, t) (4.12) that originate from discontinuities in the interac-
tion zone of u{x, ¢,), to be adequately approximated by the self-similar solution to
the local Riemann problem. We note that once the outcoming waves are properly
resolved on the computational grid, the previous analysis applies.
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In Section 7 we present numerical experiments where the scheme (5.9) with f®
replaced by fRCF (5.11) is applied to an interaction problem for the Euler equations
of polytropic gas. In all these experiments the scheme (5.9) has developed the
correct structure of the solution.

We remark that the scheme (59) with fR9F in its form (5.11b) admits a
stationary “expansion shock™ as its steady solution. This can be easily rectified by
adding entropy viscosity terms for the genuinely nonlinear characteristic fields (see
[13,14,97).

6. EULER EQUATIONS OF GAs DyYNAMICS

In this section we describe how to apply the scheme (5.1) to the Euler equations
of gas dynamics for a polytropic gas:

u,+ flu), =0 {6.1a)
u=(p,m E)” {6.1b)
f(u)=qu+(0. P, gP)" {6.1c)
P=(y— I)E—1pq*). [6.1d)

Here p, q, P, and E are the density, velocity, pressure, and total energy, respec-
tively; m = pg is the momentum and y is the ratio of specific heats.
The eigenvalues of the Jacobian matrix A(u)= Jf/du are

alu)=qg—c, ay(u)=gq, ay(u)y=gq+c, (6.2a)

where ¢ = (yP/p)'"? is the speed of sound.
The corresponding right-eigenvector are

/

1 1 1
nwy=| g—c . rnw=|q | rnw={qg+c}; 62b)
H—gc iy’ H +gc
here
H=(E+P)jp=c"/(y—~ )+ (6.2¢)

is the enthalpy.
To compute {/,(u)} which is bi-orthonormal to {r. ()} in (6.2b), we first form
the matrix T(u), the columns of which are the right-eigenvectors in {6.2b)

T(u) = (ri{u), ro(u), rilu))
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and then define /,(u) to be the kth row in T ~'(u), the inverse of T(u). We get

li(u)=3(b,+q/c, —b g —1/c, b))
Lu)y=(1—~b,,byq, —b;) (6.2d)
L(u) =3(b, —q/c, —b, g+ 1/c, by),
where
by=(y—1)c? (6.2¢)
b,=1q%b,. (6.2f)

Given {v”}, approximation to {i(x,.1,)}, we use (6.2d)-(6.2f) to evaluate the
locally defined characteristic variables (5.8b)

wi(vr) =1(v)) o} fori=j—r,..,j+rand k=1,2,3. (6.3a)

Next we apply our scalar reconstruction algorithm to each of the locally defined
characteristic variables in (6.3a) The scalar reconstruction R(x, w) is described in
an algorithmic form in an Appendix; the output of this algorithm is in the form of
the finite Taylor series in (4.2b). Thus we get for each characteristic variable in

( ~12,-j+12)

R(x; w(v™)) = Z br(x —x, )/t (6.3b)

[=0
Rearranging terms we can express the vector reconstruction (5.8a) by

r—1

R(x;v")= Z b, (x—x )’/l' (6.3¢)
1=0
where
3
Z ,,rk (6.3d)

Note that wherever the solution is smooth

al
=W(p, m, E)T +0h ) for 0<iI<r—1. (6.3e)

X =x

bj,/

We turn now to describe the Cauchy—Kowalewski procedure (4.4)-(4.5) for the
Euler equations of gas dynamics. We start by using the reconstruction output (6.3c)
to define (4.4a), i.e.,

d'v(x,, 0) _ {b]_, for 0<i<r—1 (6.42)

ox? 0 for Iz
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We find it convenient to express 0'v(x,, 0)/6x* &'~ * in terms of derivatives of the
4-vector Z={(p, m, P, q)". For this purpose we use {6.4a) and the relations

m=pq
P=(y— L)(E—1gm)
to find the x-derivatives of g and P, by
M, =qp.+pq.=q,=(m . —qp.jip
P,=(—DIE~Hgm+gm)]
M= PGt 20 G+ P = Goe= (M — g0, — 24P, )iP
er = (), —1 )[E\'x - %(’“(]n + 2qvn7.r + gm., )]
and so on. Having evaluated ¢'Z(x,, 0)/0x’ for 0</<r— 1, we proceed to obtain

the rest of the derivatives ¢'Z(x,, 0)/éx* ar'~*, 0<I<r—1, 0<k <! by differen-
tiating the PDEs

p.+m,.=0 {6.5a;
m,+ (gm),+P.=0 (6.5b)
P,+qgP +7yPu.=0 (6.5¢)
and the algebraic relation
m=qp {6.5d)

in the following ordered way: Compute Z (x,, 0) {rom

p.t+m =0
m,+q.m+gn.+P =0
{&6.6a)
P+qP . +yPq. =0
pq.tp.g=m.
compute Z (x,,0) from
p.\'l+n/1xr:0
mxr + qumx + q771 XY + nqu:c + P\'\ = 0
{6.6b)

PotqPo+vPq. +(1+7)q. P, =0
pqxl+p\qt+ptqv(+qp\:z:nl\'l;

581 71+2-3



262 HARTEN ET AL.

compute Z,(x,, 0) from

Putm,=0
n1[! + q’nxl + ’nq.\ff + PXI + (q.’(nll + ql’n_’f) = 0
(6.6¢)
P,+qP,+7Pq,+(q,P.+yP,q.)=0
pq,+ 2P1qt +qo.=m,,
compute Z . (x,, 0) from
pX\'[ + ’11\'Y\ = 0
nz vef + qn’l\\'t + n1q Yx + P\\Y + 3qr’7zf\' + 3qk“f”” v = 0
(6.6d)
PX\’I + qP’CXX + )’Pq,\’xx + (2 + ‘)’) q\'P.\'.\.' + (1 + 2’},) qXXPX = 0
P+ 200 G F PG )+ 9P+ P+ PG x = Mo
compute Z,(x,, 0) from
pxn + rrlxxt = O
’11,‘C1[ + q”’l.\”([ + n1q.\’.’f[ + PXX! + z(q\”nxf + n1’qul) + (n11q X + q[m_\,’)() = 0 (6 6 )
.6¢

Pvn+quvt+quxxt+ (7’+ 1)[‘],wpx+qxp.w] +quX_x+yPIqxr=0
pqxrt+qpv1r+p\-qn+qrpn+2(.0\'1[]t+,0tQW):m.\-n;

compute Z,,(x,, 0) from
Pret My, =0

my, +qmg, +mq., + P‘(!t +2(szx1 +m,q.)+ (qun‘f‘qu”)zo (6 6f)

Pu+qP. +7Pq , +yq. P, +2q,Pyu+yPq.)+q,P.=0
P9+ 4P+ 3(p1qu + qrpu) =My,

and so on.

We note that one can differentiate the algebraic relation (6.1d) in order to obtain
0'E(x,, 0)/0x* 8t~ * in terms of the already evaluated derivatives of P, ¢, and m and
use the derivatives of the conserved quantities p, m, E to compute 7,(x, 1) in (4.5).
However, it is more convenient to evaluate the flux f(u) and f®(u,, uz) in terms of
P, ¢, and P; since 7(x, t) is smooth and the scheme (5.9) is in conservation form we
do not really to worry about relation (4.12b). See Remark 6.2. For this reason we
use the first, third, and fourth components of Z (X, t)

- 0'Z(x,,0) (x—x,)* 1'%
(x, 1) = Z Z e F k=R

[=0k=0

(6.7)

to define p,(x, 1), I~’J(x, t), and §,(x, t), respectively.
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Once we have computed (6.7) we can compute the numerical flux 7, ,, in
(5.9b).
An exact fR(u,, u,), ie.,

SRy, uy) = F(V(0: uy, uy)) (6.8)

where V(x/t; u;, u.) is the exact solution of the Riemann problem for the Euler
equations of gas dynamics, can be computed through an iterative algorithm. This
algorithm is rather complicated, and we refer the reader to [3, 3, and 287 for its
details.

To compute /& = fR°F in (5.11b) and (5.9b) all we need is to describe the par-
ticular average a{u,, u,) for the Euler equations of gas dynamics (see [25,91). To
do so we denote the arithmetic mean of b(u) with respect to u, and u, by

(by = bluy) + b(us)] (6.92)

and define

G=LpaYi{y Py, H=(ypHY/ p). é=(—1)12 JH-1§%

here H is the enthalpy (6.2c). Having prescribed 4. H. and ¢, we have all the quan-
titites needed to define the eigenvalues and ecigenvectors in {6.2}.

Remark 6.1. The importance of using the particular average (6.9) rather thar a
simpler one is that when (u,, u,) corresponds to a single shock or a single contact
discontinuity in the solution of the Riemann problem V(x/f:u,. u,). then F*°F is
exact. i.e.

SROB(u, L ua) = FROVO0: . us)). {6,101

Remark 6.2. No matter how we derive #,(x, ) the numerical approximation
(1.16a) is in conservation form. However, in order to make v *! approximate the
cell average (l.14c} (which is desirable for stability purposes), we need the
reconstruction to be conservative, i.e., (1.14b) should be valid.

7. NUMERICAL EXPERIMENTS

In this section we present results of several computer experiments with ihe
schemes (4.14) and (5.9). These schemes will be referred to as rth order ENG
schemes (or “rth order” when applicable—see Remark 1.2); ENO stands for essen-
tially non-oscillatory.

The ENO schemes are highly nonlinear and consequently do not easily lend
themselves to rigorous analysis. At present we have completed the analysis of the
non-oscillatory interpolation H,, (3.1)-(3.5) and have acquired a fairly good
understanding of the reconstruction R(x;w); these reconstruction results can be
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extended to a single application of the “abstract scheme” (1.10) to piecewise smooth
data. Unfortunately we have not been able as yet to analyze rigorously the crucial

numoer ol numerical cxperiments with 1nital aata ranging [rom random noise to
smooth functions. We have studied two notions of “stability™: (i) boundedness of a
refinement sequence 2 — 0, t= O(h) for 0<¢ < T; (i1) boundedness of the numerical
solution as n — oo with fixed /4 and 7. In all our experiments' we have found the
ENO schemes to be stable under a CFL restriction of 1 and strongly so, in the
sense that they strongly damp high frequency noise—this is probably due to the
cell-averaging step (1.14c).

In [15], the first paper in this series, we have presented numerical results which
compare the second-order ENO scheme based on RD with r =2 to a “second-order
accurate” MUSCL-type scheme, which is computationally equivalent to the
“second-order” ENO scheme based on RP with r=2

In [16], the second paper in this series, we have presented numerical experiments
that verify our statements about the accuracy and non-oscillatory nature of the
reconstruction R(x;w), and demonstrate the stability of the ENO schemes in the
scalar constant coefficient case for both the pure IVP and the mixed initial-boun-
dary value problem (IBVP).

In this paper we present a sample of our numerical experiments for the nonlinear
scalar case and the Euler equations of gas dynamics in 1D. The purpose of this
presentation is to address the open questions that we could not fully answer by
analysis: The accumulation of error, the adequacy of the “solution in the small”
procedure, consistency with entropy inequalities, and the effectiveness of the charac-
teristic-wise reconstruction for systems. We have performed most of the numerical
experiments for r=1, 2, 3,4, 5, 6. Since it is not practical to present six sets of data
for each problem we usually compare =2, which is the current state of the art
scheme, to r =4 which seems to be optimal for smooth solutions. However, presen-
tation of a comprehensive efficiency study is deferred to a future paper.

A. ScaLAR CONSERVATION LAws

Al. Convex f(u) with smooth initial data
In this subsection we show results of applying the ENO schemes to
u,+u*2)x=0 (7.1a)
u(x, 0)=o + f sin(zwx + y), (7.1b)
! The only expection where we had to reduce the CFL number 1s for the initial data of the mesh
oscillation function ¢®=( —1)~. This choice of mnitial data forces the ENO scheme to become linear; for

vj" =60,(—1)/, where 9] is a positive random number, the scheme 1s again stable under a CFL restriction
of 1 (see [16] for more details).
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TABLE IA
Solution of the Periodic IVP (7.1) at r=0.3 by ENO Schemes Based on RP

J R=1 r. =2 r. r=3 r. r=4 . r=> 3
L, -Error
8 1.582x 107! 9.047 x 10~ 3804 %1072 2715%x10°° 21T x 167+
080 1.07 2.24 2.76 2.86
16 9.082x 1072 4300x 10?2 8.038 x 104 3968 x 10 ° 2906 x 10"
087 .24 210 318 276
32 4964 x10°° 1.819x 1072 1.876 x 103 4423x 107 2A50x 107
091 1.32 2.35 339 365
64 2648 x107° 7.296 x 107 3684 x 10+ 4211 x 1073 1713 %1673
092 133 214 3.02 450
128 1404102 2900 x 103 8.356x 1073 5188 x 10 °° 7.562x 10
L -Error
8 8440x107" 4507 x 10~ 1.669 x 102 1.003 x 10+ 7.000 x 10-°
0.98 179 2.70 321 357
16 4279%10°° 1.304x 10+ 2574 % 107 1086 x 16~° 3875 10
0.97 18t 2.69 353 408
32 2.186%x10°* 3707 x 1073 3992 %10 9400 % 10-° 3462x 10 7
0.96 189 269 357 448
64 1124x107? 9980 x 10-* 6.165x 107 7905 % 10" ° 1546 10°°
0.99 183 256 3.53 462
128 5.675x10°° 2813x 107 1042x 107 6.835x 1677 6.270x 167"
TABLE IB

Solution of the Periodic [VP (7.1) at r=0.3 by ENO Schemes Based on RD

J r=1 i F=2 r P=3 r r=4 F, r=3 7

¢ ¢

L, -Error

8 1.582x10°! 5204 x 1072 4484 %1072 2787 x 102 2115%10°°
080 1.94 30t 297 317
16 9.082x 102 1.352x 1072 5.577x10°° 3563x 1077 2343x 1077

32 4964x10°2 3.562x107? 8.791 % 10~ 3977 x 1077 . L1991 x 10
64 2648 x 107 8.610x 107+ 5.658 x 1073 2927 %1073 ‘ 5242 x 10-°¢
128 1.404%x10°7 1748 x 10—+ 6081 x 10°¢ 1.077%x10°¢ ' 1276 x 1077

Li-Error

8 8.440x 1072 2231 x 1072 1333x10°° 8 600 x 10~ 6.045x 16"
098 240 3.26 371 350

16 4279x 1072 4.228x 103 1.388 x 10? 6.575% 10 % 1063 x 164
0.97 230 331 402 446

32 2.186x1072 8.565x 10~* 1.399 x 10—+ 1056 x 103 1919 x 1077
0.96 2.23 3.67 4.39 3540

64 1124x%107? 1.826 x 10~ 1.096x 10 1.096 x 10— 1936107
0.99 2.18 3.35 4.53 553

128 35.675x107? 4.039%x 103 107t x10°¢ 8.385x 107" 9.810x 10~
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TABLE IIA

Solution of the [BVP (7.1) and (7.5) at r=0.3 by ENO Schemes Based on RP

J r=1

r

11

r=2

r

¢

r=3

r

¢

r=4

e

r=35

L -Error
8 1471 x10-!

16 9.184x 102
32 5382x10°°
64 3.198x 1072
128 1742x 1073

L,-Error
8 7.745x 1073

16 4.015x10-*
32 2143x 1072
64 1.102x10°°

128 5.630x10-*

0.68

0.77

075

0.88

0.91

0.96

0.97

9.047 x 102
4.300x 102
1.819x10*
7.296 x 103

2.900 x 103

3.355x 1072
1.339x 1072
3.643x 1073
1.003 x 103

2855 x 1074

1.33

133

1.88

1.86

1.81

2849 %1072
1.672x 1072
2477 x107*
3684x10*

8.356 x 10~*°

1221 x 1072
4032 %103
4.563x 10—+
6.175x 103

9.485x 1076

0.77

275

2.75

1.60

2.936 x 10 2
9.943 x 103
1.275%x 103
3.614x10-°

5.089 x 10 ¢

8.065x10?
1.528 x 103
1.445x 10~
7.505 % 10-°

6.285x 107

1.56
2.98
5.14

2.83

1.766 x 10 2
1.096 x 102
9.149x 10~
1.944 x 103

7.540 x 1077

5265 1073
1.389 x 10~
7.810x 1073
2371x107¢

7.060 x 10 ~#

0.69

5.56

4.69

5.04

5.07

TABLE IIB

Solution of the IBVP (71) and (7.5) at 1=0.3 by ENO Schemes

Based on RD

J =1

r

¢

r=2

F.

r=3

r

¢

=4

r=>5

L, -Error
8 1.471x10°°

16 9.184x 102
32 5382x10°*
64 3.198x10°2
128 1.742x107*

L-Error
8 7.745x 10?2

16 4015x 1072
32 2143 x 1072
64 1.102x 1072

128 5.630x 1073

0.68

0.77

0.88

0.91
0.96

0.97

3.264 x 102
1.907 x 102
3.454 %10 *
8.302x10-*

1.754 x 10—+

1.488 x 107
5.190 x 103
8.740 x 10—+
1.879 x 10~*

4.219x 1073

3122x 1072
8571 x 107
1.366 x 103
5220x 1073
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for —1<x<1, +>0. In these calculations we have used the ENO schemes with /*
replaced by fR*°F (4.21) (without any entropy correction).

Let Z(x,t) denote the solution of (7.ta) with Z(x.0)=sinnx, ie, f=1,
e=7=0 1n (7.1b). The solution Z(x, t) is smooth for 0 << 1/n; when t="1/7w a
shock develops at x= +1 and stays there as a stationary shock for :>1/n. Some
time after its development, this shock starts interacting with the expansion wave in
—1<x<1; this brings about a fast decay of the solution The “exact” solution
presented in the following is computed in 0<x <! by using Newton-Raphson
iterations to solve the characteristic relation

F =sinn{x— Zr); (7.2

Z in (—1,0) is obtained from Z in (0, 1) by Z{—x. )= —Zx,1). The general
solution of (7.1) is computed from Z(x, f)in (—1.1) by

ulx, 1)=o+ BF(x— xt+ 7. fr). (7.3

In TablesT and II and Fig. | we present the computation of {7.1) with «=1,
B=1 =0, ie., ulx, {)=1+41Z(x -1, 1); thus the shock develops at 1 =2/n. The
results are presented at 1= 0.3 when the solution 1s still smooth. We divide { —1. 1}
into J equal intervals and define

X,= =14+ (j—1/2)h, h=2/J, 1<j<gJ 17.4)

First we consider the pure IVP for (7.1), i.e., periodic boundary conditions at
x= +1. In Figs. 1a and b we show the results of the ENO schemes with RD at
=0.3; Fig. la shows the second-order ENO scheme, while Fig. 1b shows the
fourth-order one. Both calculations were performed with J= 10 and CFL =0.6. The
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continuous line in these figures is the exact solution; the circles represent the values
of R(x,;v"). In Tables [A and IB we list the L_ -error and the L,-error at r=0.3 of
a refinement sequence J=38, 16, 32, 64, 128 for r=1,2,3,4,5 with CFL=0.6.
Table TA shows the results of the ENO schemes with RP while Table IB shows the
ones with RD. The value of r, in Tables I and II is the “computational order of
accuracy” which is calculated by assuming the error to be a constant times A™; this
definition is meaningful only for 4 sufficiently small.

In Figs. 2a and 2b we use the same schemes as in Fig. 1, but with /=16, and
show the results at 1~ 2/z (after 17 time steps) which is the time of the formation of
the shock. In Figs. 3a and 3b we show the reconstruction R(x; v") corresponding to
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the numerical solutions of Fig. 2. The squares in Figs. 3a and 3b mark the values of
R(x,,1,£0;v"). R(x;v") is a piecewise linear in Fig. 3a and piecewise cubic in
Fig. 3b.

Next we consider the IBVP for (7.1); since the characteristic speed for (7.3) with
a=1, f=1 y=0 is positive, we prescribe

u(—1, t)=glt); {75a)
x = +1 is an outflow boundary and no condition is prescribed there. To be able to
compare with the periodic problem we take g(r) in (7.5a) to be the value of the
periodic solution at x= —1, ie,

g(t)y=1+3Z(— 11— ). {7.5b3

191

The point of view that we have taken in treating boundary conditions is consistent
with the presentation of the “abstract scheme™ (1.10), (1.14) as a sequence of global
operations. Thus in the reconstruction step, as in the pure IVP case, we use the
given cell averages {vj"}, 1<j<J, to get R(x;v") for -1 <x<1; in the presence of
boundaries we restrict the choice of stencil to the available information by imposing
the condition

I<il(jysd—r for 1<k<r {7.61
in the algorithm (3.4). Note that we do not use the given boundary data g{f) {7 5a)

the PDE level by considering the solution-in-the-small step to be an IBVP.
Obviously the resulting scheme is biased “against the wind” near x= —1I;
nevertheless, numerical experiments in the nonlinear case as well as in the constant
coefficient case (see [16]), indicate that the ENO schemes are stable. We observe
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that a similar choice of stencil occurs near discontinuities in the interior of the com-
putational grid.

In Tables IIA and IIB we repeat the calculation in Table I for the IBVP (7.1)
with (7.5). In Figs. 4a and 4b we show the calculations of the ENO schemes based
on RP with r=2 and r =4, respectively, for the IBVP (7.1) with =0, =1, y=m.
Here the boundaries x = &1 are characteristic, and a stationary shock develops at
x=0 at = 1/7. In these calculations we have treated x = —1 as an inflow boundary
and specified

u(—1,1)=0;

x= +1 was treated as an outflow boundary. The results show the numerical
solution with J=16 and CFL=0.6 at r=0.6, at which time the solution has
already started to decay considerably due to the interaction of the shock with the
expansion waves.

A2. Riemann IVP for Nonconvex f(u)

In this subsection we show results of applying the ENO schemes to the Riemann
IVP

B o fu x<0
u, + flu). =0, u(A,O)—{HR >0, (7.7a)
where f(u) is the nonconvex function
Sflu)=3u*— 1)’ —4). (7.7b)

We recall that the main difficulty in justifying the approximation (4.13) is when the
“fan” in (4.4) covers x=Xx, ,; the same difficulty is encountered in justifying the
use of fRF (4.21) instead of the exact flux of the Riemann problem (4.6). Therefore
we present two cases in which a(u, uz)=0; in the first case, x =0 is covered by a
centered sonic rarefaction fan while, in the second one, there is a stationary (sonic)
shock at x=0.

In each case we present two sets of experiments. In the first set we use the ENO
schemes with the exact f® which is defined by (4.6a); these results, which we con-
sider to be rather pleasing, are presented in Figs. 5 and 7. In the second set of
experiments we use the ENO schemes with f® replaced by the following
modification of f®°E in (4.21)

fROE(’/Ha uy) =3[ fuy) + flu,) —max(|a(uy, us)l, e)(uy —uy) 1. (7.8a)
The addition of the linear viscosity term —z(u,—u,)/2 for |a| <e, is the simplest

but crudest entropy correction of (4.21). We note that ¢ =0 in (7.8a) corresponds to
(4.21), while ¢ =1/A (A =1/h) corresponds to Lax’s first order scheme [187; since
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(7.8a) satisfies relation (4.16¢) the modified scheme remains rth order accurate. In
our calculations we take

e=0.1/4 {7.3b)

Analysis presented in [24] shows that using (7.8a)—(7.8b) in the “second-order”
TVD scheme of [9] results in a scheme which converges to entropy correct
solutions for convex f(u), provided that A is sufficiently small; numerical
experiments in the convex case [9] and the non-convex case [32] seem to verify
this statement even for a CFL number close to 1.

The numerical results of the ENO schemes using (7.8a)-{7.8b) are shown in
Figs. 6 and 8. These results show that the ENO schemes converge to entropy
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correct solutions; however, the quality of the numerical approximation depends
strongly on the formal order of accuracy of the scheme.

We remark that an entropy correction to f*°F which is more appropriate for
the nonconvex case is obtained by using in (7.8a), ¢ = &(u,. u,) which is defined by

e=max[0, a(u,, us)~a,.ag —alu,, uy)], {7.8¢)
where
ap = min d(u,,v), ag= max a(v, uy}; {7.8d)
te fuy, ur] ve [uy.und

see [13]. In this case the modified f*°F becomes computationally equivalent to ihe
exact fX.
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Our purpose in presenting numerical experiments with the crude entropy correc-
tion (7.8b) rather than the more appropriate one (7.8¢)-(7.8d) is to demonstrate
that the importance of the Riemann solver in the formulation of the ENO schemes
is decreasing with increasing order of accuracy. When r=1 R(x;v") is piecewise
constant and all the variation of the solution is contained in the discontinuities of
the reconstruction. Consequently the Riemann solver is the only mechanism to
describe time evolution. For r> 1, the smooth polynomial variation in the cell
(which 1s O(h) in regions of smoothness) is generally larger than the variation in
the discontinuities of the reconstruction (which is O(A") in regions of
smoothness)—Figs. 3, 14, and 16. Therefore the time evolution of the smooth
polynomial part, namely the Cauchy-Kowalewski procedure is, in general, more
important than the Riemann solver. The only exception is in the first few time-steps
needed to introduce intermediate states in the solution to the Riemann IVP (7.7),
where (i, , ug) is not a shock.

In all the calculations presented in this subsection we have used the ENO
schemes with RD and CFL =0.8.

Case (i). wup =2, ug = —2. The exact solution in this case is (see Fig. 5a)
2, x/t < —0.5281529
u(x, ty= { g(x/t), [x|/t <0.5281529 (7.9a)
-2, x/t>0.5281529;

here g(x/1) is a centered rarefaction wave: g( y) is the solution of
y=/,"(g)
in the concave part of f which is |u] <./5/6;

g(+0.5281529) = F0.2152504.

In Figs. 5b, ¢, d we show the results of the ENO schemes using the exact f* as
defined by (4.6a) for r=1, 2, 4, respectively; in these calculations we used J=40 in
(7.4) and N = 80 time steps. The exact solution is shown by the continuous line; the
circles mark the values of R(x,; v"). We observe that the structure of the solution in
these calculations has developed at the correct rate; this is evident from the fact that
the location of the computed shocks is accurate. In Fig. Sb we notice the “dog-leg”
which is typical of Godunov’s scheme.

In Figs. 6a, b, ¢ we repeat the calculations in Figs. 5b, ¢, d but with /® replaced
by fROF (7.8a)-(7.8b). From these figures we see that the scheme develops the
correct structure of the solution, but not at the correct rate. This is due to the fact
that ¢=0.1/1 represents a fan which is much narrower than the initial fan in the
exact solution. The location of the computed shocks lags behind the correct
location by 8 cells for r=1, 3 cells for r =2, and only one cell for r =4. To verify
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that the numerical approximations converge to the entropy correct solution we
refine the mesh by a factor of 2 and repeat the calculations of Figs. 6a, b, ¢ with
J=280, N=160; the results of these calculations are shown in Figs. 6d, ¢, f. Since
the number of cells by which the computed shocks lags behind the correct location
remains the same, we conclude that the numerical approximations indeed do con-
verge to the entropy solution.

Taking into account the crudeness of the entropy correction {7.8b} we consider
the performance of the 4th-order scheme in Fig. 6c and 6f to be surprisingly good.

Case (). wup= =3, ug=3.
The exact solution in this case is (see Fig. 7a)

-3 x/t< —19.5
g(x/t) —195<x/t<0
ulx, 1) = (7.9b)
—g(—x/1) O0<x/r<195
3 195 < x/1;
here g( ) is the solution of
y=r(g)

mn the convex part of f which is |u] > \/"—5,_’6.. Note that the solution {7.9b} is discon-

tinuous at x =0; g(0)=,/2.5.
A

(7.4) and N =20 time steps. We observe that the stationary shock at x=0 in these

figures in perfectly resolved.

In Figs. 8a, b, ¢ we repeat the calculations in Figs. 7b, ¢, d but with f® replaced
by fROF (7.8a)-(7.8b). Since the rarefaction fans in this case are not sonic, the
quality of the numerical approximation of the rarefaction wave in Figs. 8a, b, ¢ is
similar to that of the corresponding one in Figs. 7b, ¢, d. We observe that the
stationary shock at x=0 in Figs. 8a, b, ¢ is somewhat smeared—this is due to the
fact that the Riemann solver corresponding to (7.8b} places a fan of the size
{x/t| <& around x = 0. Nevertheless, if we compare the results of the 4th-order ENO
schemes in the two experiments, we find that the results in Fig. 8 are only slightly
inferior to those of Fig. 7d.

B. Euler Equations of Gas Dynamics

In this subsection we present numerical experiments with the ENO schemes for
the Euler equations of gas dynamics for a polytropic gas with y = 1.4 {see Sect. 6}.
In all these calculations we have used reconstruction via primitive function {(RP)
and fR9F (5.11), (6.9) without any entropy corrections.
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B1. Riemann Problems

In Figs. 9 and 10 we show the results of applying the ENO schemes with r=2
and r =4, respectively, to the Riemann problem (7.7a) with the initial data

(Pr>qu, P)=(1,0,1);  (pg. gr, Pr)=(0.125,0,0.10). (7.10a)

In these calculations we have used the characteristic reconstruction (5.8), (6.3) with
100 celis, #=0.1, CFL =0.8, and 50 time steps.

In Fig. 11 we repeat the calculation of the “fourth-order” ENO scheme in Fig. 10
but with component-wise reconstruction (5.1). Comparing Fig. 10 with Fig. 11 we
see that there is some “noise” in the component-wise reconstruction which is
eliminated by using characteristic reconstruction. We note however that the level of
“nois¢” in Fig. 11 may be considered acceptable for practical calculations.
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The initial data (7.10a) are those of the Riemann problem proposed by Sod in
23], which has become a standard test problem. The solution of this problem has
a monotone decreasing density profile and therefore it does not display certain dif-
ficulties that may arise when the intermediate state has to be “built-up.” In
Figs. 12-16 we present calculations for the Riemann problem

(Prsqu, Pr)=(0.445,0.698,3.528);  (pr,qdr. Pr)=1(05,0,0.571) (7.10b)

used by Lax in [18]; see also [7, 9]. All these calculations were performed with {00
cells, #=0.1, CFL=0.8, and 85 time steps using a component-wise reconstruction
(5.11). In Fig. 12 we show the results of the “4th-order” ENO scheme using a com-
ponent-wise reconstruction (5.11). Comparing these results to Fig. 11 we see that
the component-wise reconstruction here is much “noisier” than in Sod’s probiem. In

581 7t.2-4
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Figs. 13 and 15 we show the results of the ENO schemes using characteristic
reconstruction (6.3) for r=2 and r =4, respectively; comparing Fig. 15 to Fig. 12
we see that most of the “noise” in Fig. 12 is eliminated.

In Figs. 14 and 16 we show the characteristic reconstruction R(x;v") of the
numerical solution in Figs. 13 and 15, respectively; R(x;v") is piecewise-linear in
Fig. 14 (r=2) and piecewise-cubic in Fig. 16 (r =4). The squares in these figures
mark the values of R(x,, ;,, = 0;v"); thus the difference between the two squares at
the same location shows the size of the discontinuity in the reconstruction there (we
recall that the circles in Figs. 13 and 15 are the values of R(x,; v")). We see that the
discontinuities in the reconstruction of the rarefaction wave are small enough to be
graphically imperceptible. Surprisingly the discontinuities in the reconstruction of
the contact-discontinuity are also rather small. Comparing Fig. 16 to Fig. 14 we
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notice that the size of the discontinuities in the reconstruction for r =4 is always
considerably smaller than that for r=2. It is interesting to note that even in the
shock region in Fig. 16 (r=4), the sum of the jumps in the reconstruction is only
about 35% of the size of the shock, while about 65% of the shock jump is described
by the smooth polynomiai part of the reconstruction.

We remark that because of the self-similar nature of the solution to the Riemann
problem, the rate of convergence of any scheme is inherently limited to first order
(see [27]). Comparing r=4 with r=2 in the solution of the above Riemann
problems we notice a slight improvement in the smearing of the contact-discon-
tinuity {we have not used artificial compression in these calculations) and the
description of the rarefaction wave. Because of the self-similar nature of the solution
it is better to compare the performances of two schemes by using x/r as the spatial
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variable and to find how many time steps it takes to get well-resolved intermediate
states. Doing so for the problem (7.10b) we find that » =4 with N =35 gives about
the same result as =2 with N=70.

B2. Interaction of Blas Waves

In this subsection we present numerical experiments with the ENO schemes for
the problem of two interacting blast waves:

up 0 <x<01
u(x, 0)= { uy 0.1<x<09 (7.11a)
Ug 09<x<l,
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where

pr=pu=pr=1 qu=gu=¢r=0, P =10°, Py=10"% Pp=10% ({7.11b)
the boundaries at x=0 and x=1 are solid walls. This problem was suggested by
Woodward and Colella as a test problem; we refer the reader to [31] where a com-
prehensive comparison of the performance of various schemes for this problem is
presented.

In our calculations we divided the interval (0, 1) into J cells by
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where x, marks the center of the jth cell. The boundary conditions of a solid wall in
x=0 and x=1 were treated by reflection, ie, we defined auxiliary states

n

vg,.., v”,; for the left wall and v _ ,,.., v’;,, for the right wall by

n n

p_]+1:pj"a q,j+1= _an, P’Lj+l=P_7’ j:l,..., r (712b)

n — n " n 1] — i3 y — o
Pre,=Pr—j+1s 9= —95_, 41> e, =P J=Le,r (7.12c)

UUulanl)’ 10 LVIILLLCAOE ad a L"Wd.V\a, \,Uub\,quuuu_y vy 1D uaxul_y auy el aviivii
between the waves in the characteristic variables (6.3a) and a situation of not
having enough points of smoothness to choose from is thus avoided.
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In Figs. 17a-h we show the solution of the “4th-order” ENO scheme at
1=0.010, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034, 0.038, respectively. We refer the
reader to Fig.2 in [31], where a highly accurate solution is displayed and a
detailed description of the various interactions that occur at these instances is
presented. The continuous line in Figs. 17a-h, 18, and 19 is the solution of the “4th-
order” ENO scheme J=2800 in (7.12a). Comparing this solution to the “exact”
solution of Woodward and Colella in {317, we find that it shows all the important
features of the various interactions and thus can be considered a “converged”
solution. (The continuous line representing the solution with J=800 is the
piecewise-linear interpolation of {R(x,;v")}; consequently cusps in the solutiomn,
which do appear in R(x; v"), are chopped in the graphic representation). The circies
in Figs. 17a-h show the values of R(x,;v") of the “4th-order” ENO scheme with
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= amnarin i i = =

at tne velocity and pressure nave already converged, winile ensity 1n r'1gs, 1/g
and 17h still deviates from the “converged” solution. This is due to the smearing of
3 contact discontinuities which are present in the solution at this time; the
numerical results of Woodward and Colella demonstrate that the addition of
“contact-discontinuity steepeners” improve the density profile considerably.

In Fig. 18 we show the solution of the “4th-order” ENO scheme with J=200 at
the final time 7=0.038; In Fig. 19 we repeat the calculation in Fig. 18 for the
“2nd-order” ENO scheme. Comparing Figs. 18 and 19 we see that the “4th-order”
scheme gives a much better resolution. We remark that the results of the
“dth-order” scheme with J= 100 (not shown here) are of the same quality as those
of the “2-order” scheme with J= 200.



[
oo
(%4

HIGH ORDER ACCURATE SCHEMES, I

We note that a parabola interpolating
P(x_,)=240, P(x,)=0.01, P(x,) =40

has an interval in which it is negative; the same is true for higher order inter-
polating polynomials that pass through these points. A situation of this type occurs
in the calculation of the two interacting blast waves just before the interaction in
Fig. 17d, when the low pressure region in Fig 17¢ is shrinking to 1-2 com-
putational cells. Since high order interpolating polynomials may produce negative
values of pressure and density in such drastic situations, we have imposed a
“positivity condition” on the reconstruction step of our programs for the Euler
equations. To ensure that R(x; v") in the jth cell yields density and pressure that are
positive, ie.,

r—1 akP (X—Xj)k

P/+k§l_a—x__k_ \.=_\,IT>O’
1

r—lakp (X_Xl)k ‘ | {7.13a)

p,+k§15? r:\,~k!—>0 for |x—x|<hi2
we check whether
r! BkPj (13/2)" r—1 C’;kp (k/z)k
0.8P,; LN <038, 7.13b

kZ::l axk A < 73 kz::l 8xk X < P, ( }

If condition (7.13b) is not satisfied we reduce the order of the reconstruction focaily
at x = x, until positivity is ensured. We observe that the LHS of the inequalities m
{7.13b) is O(h) in smooth regions, hence this positivity condition does not reduce
the asymptotic order of accuracy. Our computer program monitors does not reduce
the asymptotic order of accuracy. OQur computer program monitors occurrences of
order reduction due to the positivity condition; we have found that the order in the
calculations of the “4th-order” ENO scheme has been reduced during two time
steps before the interaction in Fig. 16d, and only at the interaction zone itself; we
have not encountered any order reduction in the solution to the Riemann problems
(7.10).

C. Variants and Extensions

C1l. Characteristic Method for the Scalar Case

In [15] we described an approximation to v(x, f), the solution-in-the-small of
(4.2), which is obtained by tracing approximate characteristics to the initial data.
This approximation #(x, ¢) can be extended to an arbitrary order of accuracy as

follows: Let ar, , , denote

&7+1’/2=6(R(x]+1/2_0; U"), R(x,+1/2+0; U”)), (7.143}
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where a(u,, u,) is defined in (4.7), and let d(x) denote the interpolation of &, ,,, by
H, 31)withm=r—1, ie,

(X4 10) =0}, 5 (7.14b)

a(x)=H,(x;a"), m=r—1. (7.14¢)

The approximation #(x, t) is obtained by prescribing constancy of the solution
along the approximate characteristic lines

x=xy+ d(xy)1, (7.15a)

ie.,

D(xo+ a(xg)t, 1) =0(xg, 0) = R(xq; v"); (7.15b)
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thus
o(x, 1) = R(xolx, 1); v"), (7.15¢)

where xy(x, 1) is the solution of the algebraic equation {7.15a). Let x}{x, r} denote
the solution to (7.15a) for m=1 in (7.14¢); if x and ¢ are such that

il-l,’2(1)<x<”~j+l'2(!)7 ‘7163}
where

"

Xip12(t)=x,4 .+ 2], |,

.
3
.
jop}
o
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then

X, r12— %12 -
X3, ) =x, ot LT (x— X, (1)) 7.16¢)
° 7ol X200 — X, 15(2) 1-1all) (
For m>1 we obtain xy(x, ¢) by solving (7.152) with Newton-Raphson iterations
starting with the initial guess (7.16c¢).
Using #(x, t) (7.15c) we define the following variant of (4.14):

u;’“=v}’—i(fl+1,2~fj‘1,2) (7.17a)
k

f;+1/2= Z o f(B( '+ 1725 Bi7)). (7.17b)

k=0
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We have started the development of the ENOschemes with the version (7.17);
later on we have replaced the characteristic method by the Cauchy—Kowalewski
procedure which offers a unified approach in extending the scheme to include fore-
ing terms and to systems of conservation laws. Our numerical experiments show
that the two versions are computationally equivalent, although the version with the
characteristic method (7.17) seems to be slightly more accurate than (4.14).

We remark that the scheme (7.17), as the scheme (4.14) with fRCE in (4.21a),
also admits any discontinuity with a(u;, uz)}=0 as a stationary solution. This
can be easily rectified by replacing the “shock curve” %, ,,(¢} in (7.16b) by an

appropriate fan.
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C2. Semi-discrete Formulation and Runge—Kutta Methods

The semi-discrete version of the ENO schemes can be derived either directly from
(1.4) or by letting 7 — 0 in (4.14), (5.9). It takes the form

d 1 -
7 v(t)= 7 LS+ 1/2(’) —fai0]=0 (1), (7.18a)
where
Fr12() = FRR(x; 41— 05 (1)), R(x, 4 110+ 05 0(1))); (7.18b)

here v (1) is an approximation to @(x,, 1); v(r) = {v,(£) }; f X (u,, u,) is cither the exact
flux (4.5) or fROE (4.21), (5.11).
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Considering (7.18) to be a system of ordinary differential equations in ¢ for the
vector u(r) = {v (1)}, we can solve the problem by using a numerical ODE solver. In
[2] we present two sets of numerical experiments in which we use Runge-Kutta
methods of appropriate order to approximate the solution of (7.18). In the first set
of experiments we apply the scheme to the Riemann problem (7.10a) for
r=1.2.3,4,5,6. In the second set of experiments we apply the scheme with r=2, 4
to a Laval nozzle problem which involves the addition of a forcing term to the
Euler equations (6.1). In these calculations we have used RP, f®°F and CFL =9.5.
Comparing the results of the Riemann problem to those in the present paper we
find them to be of similar quality. The numerical experiments of [2] indicate that
the semi-discrete formulation (7.18) with Runge-Kutta temporal discretization does
not generate spurious oscillations for CFL <0.5; however when we increase the
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CFL number beyond 0.5 we start getting some oscillations and eventually the
scheme becomes unstable.

The main advantage of using the Runge-Kutta temporal discretization is the ease
of its programming; however it seems to be less efficient than the fully discrete for-
mulation and also requires more storage.

C3. Variable Grid and Front Tracking

In Section 3 we have pointed out that the non-oscillatory interpolation H,,
(3.1)~(3.5) and the reconstruction via primitive function (RP) (3.6)-(3.10) are well
defined for non-uniform grids, see Appendix. Since the solution-in-the-small step
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also does not require uniformity of the grid, we may compute new cell-averages
p?+!in (1.14c) on any choice of intervals {I**'} by

L .
7 1
T

j D%, 1, —0) dx; (7.19)
[er»l

here I, =(h_ 14, ¢4, 1) and |I4| =€, ,— &L _\,. Using the same rationale as

before, our approximation to (7.19) becomes

|2 e+ b= ot —o(F7, 0= [0 o) {7.20a)
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The numerical flux f7_, , is consistent with f(u) —o,, ,,u

0e12= (85— )/ (7.20b)

and can be expressed as

k
;a+ 2= Z "‘kfR(ﬁj(ijr 2+ ﬁkfo',»r 1/25 Bit), b, 1(x,+ 12+ ﬂk‘50'1+ 1725 Bit); 0,4 12)
=0

‘ (7.20c)

where

FRuy, uys a)=f(Vlos uy, uy)) — V(o uy, us); (7.20d)
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we recall that Vi(e;u;,ug) denotes the value of the solution to the Riemann
problem (4.3) x/t=0. Roe’s linearization (5.11) yields the following

approximation

at

FROMuy, us; 5)=%[f(u1)+f(“2)‘0'(u1 + Uy}

- Z 5/((“1,uz)lak(ﬁ)“5|"k(?}!)jl- (7.21)
k=1

In Fig. 20 we show the results of the scheme (7.20) with f* approximated by
fROF (721) for the Riemann problem (7.10b); the values of {&7*'} in this
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calculation were chosen by the self-adjusting grid algorithm of [13]. This algorithm
provides and automatic way to place interval end points £’*' at the location of
significant discontinuities and thus avoid their smearing by the cell-averaging step
(7.19). The calculation in Fig. 20 was initialized by taking the exact solution of the
Riemann problem at #=0.5 (at which time there are 4 grid points between the con-
tact-discontinuity and the shock). The results displayed in Fig. 20 show the
numerical solution of the scheme with r=4 after 100 time steps with CFL =0.5.
These results clearly demonstrate the adaptability of the ENO schemes to front
tracking techniques.

We note that the use of irregular grids disallows the extra order of accuracy
which was gained in (1.18) for a uniform grid. Numerical experiments with irregular
grids (where ¢7+! is randomly selected within a specified interval) show that the
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error in solving the scalar smooth problem (7.1) by the scheme (7.20) is O(h" '} in
the L,. L,, and L, norms. However, comparing Fig. 20 with Fig. 15 we observe a
considerable gain in resolution in spite of the reduction in formal order of accuracy.

C4. Extension to 2D

In this subsection we outline the extension of the ENQO schemes to the sclution of
the 2-dimensional IVP

u,+ f(u), + glu), =0, u(x, ¥, 0y =wuglx. v} (7.22)

We note that Strang-type dimensional splitting [29] is only second-order accurate
in time, and therefore is unsuitable for extending the higher order accurate mem-
bers of the ENO schemes to 2D.

Let i denote the two-dimensional “sliding average” of w

wx, 1) =

1 pav2 sm2
' J wix+3, y+4)dy de. {7.23)
A

Ax Ay a2 400

[ntegrating (7.22) over the computational cell 7, x (¢, t, . 1. £,=[x,_; 5, x,, 121X
(3125 Y41 2], we find that ) =a(x,, v, 1,) satisfies

T+l

“z/ _u:;_}'\(jhtl2./_f‘1—12‘/)#/L\(g1r+12>—g"1/7l1;' ‘7243\5

where A, =1/4x, 4, =1/4y, and

” 1 T A2 _ 3

fz+£l_1_?—A—;J0~ P vzf(u(xz-i—lv'l’ .}./+'VI’ "n+t))dnd{7 (/24b}
1 AT Ay 2

$0iirn TJ\” g(ulx,+ & v,y o b+ 1)) dE di. (7.24¢)
AdX Y0 Y —4x2

The abstract form of the ENO schemes for the solution of (7.22) remains (1.13},
ie.,

l,‘"+l:Ah‘E(‘E)'R(', "), Uc’zﬁo_ {7.25)

As before E(r) is the exact evolution operator of (7.22); however, 4, is now the
2-dimensional cell-averaging (7.23) and R(x, y; w) is an appropriate 2-dimensional
reconstruction of w(x, y). In the scalar constant coefficient case

u,+au,+bu, =0, u(x, y, 0) =uplx, 1), {7.26a)



298 HARTEN ET AL.

the ENO scheme (7.25) becomes
vi*!=R(x,—at, y,— bt; 0"), vd=1o(x;, ¥,). (7.26b)

In [127 we present numerical experiments with the ENO scheme (7.26) for the
scalar constant coefficient case, where the reconstruction R(x, y; w) is obtained via a
two-dimensional deconvolution. Expanding w(x+¢&, y+#) in (7.23) around
E=n=0 we get as in (3.12)

‘i‘(x7 y) = W’(X, y) + aZ[(Ax)z‘vxx + (A.y)zwy_y] + a4[(Ax)4wxxxx

+ 2(4%)2 (AP Wy, + (Ay)w,,, ]+ O(45). (7.27)

Multiplying both sides of (7.27) by (4x)*(4y)'~* ¢'/ox* @y'~* and truncating the
expansion in the RHS at O(4"), we get as in (3.13) an invertable system of linear
equations which expresses w and its deviatives in terms of w and its derivatives. We
set

(D*®) ij=w(x,, y,) (7.28a)
and obtain approximation

k+1

ox* oy’

(D), = (4x)“(4y)’ WX, 3,)+0(47),  1<k+I<r—1; (7.28b)

then, as in (3.17), we invert the system of linear equations to get the following
approximations to w and its derivatives

k+1

Ky Kk Y
(D )lj'_ (A-X) (A}) axk 6y[

w(x,, y,)+0(4"), 0<k+I<r—1. (7.29a)

Using (7.29a) we define R in the cell 1, by

) IN(x—x, AN
R(x, y; w)= Z l— Z (D*4 =) <k>< — ><J—AT—> , (x, y)el,. (7.29b)

The approximations D in (7.28b) are obtained by a sequence of applications of
the one-dimensional operation (3.15b), which we rewrite now in the following
operator form:

4

d
-—H,(z,+0; u)); (7.30)

dl
(G, * ")J=M<E H,(z,—0; u), %
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here u denotes the one-dimensional vector {u(z,)};_ . Using {7.30) and the
notation convention w, = {W(x,, y,)}/_,. we deﬁne

(D), = (4x)*(G¥, » )

<k<r—1, (7318
(D), = (AGL, o %, ),  1<I<r—1. (7.3}

To obtain approximations to the mixed derivatives of v we first evaluate
(D), = (APV[G, , +(D*°), .. I<ISr—1—k
(D), = (Ax)[G:_,«(D*) . 1. 1<k<r—1!-—I,

mf/
and then define
(D", = M((D¥),,, (D¥),), {7.31¢c)

where M is the min mod function (3.16).

We observe that the restriction of the two-dimensional reconstruction (7.29} to
y=y, ie, R(x, )‘,;\f’) is identical to the one-dimensional reconstruction {3.18)
applied to the restriction of W to y=y,. i.e. R(x;w(* 1,)): the same observation
applies to the restrictions to x = x

We recall that the one-dimensional reconstruction is essentially non-oscillatory
only if discontinuities are separated by at least r + 1 points of smoothness. In the
one-dimensional system case we had to overcome the problem of collision (in time)
of discontinuities; in the two-dimensional case we also have te worry about inter-
sections (in space) of curves of discontinuity. In order to study the severity of the
problem we have experimented with the constant coefficient problem (7.26a} with

OYRITT0 (x, y)eU—S.

Here U=[—1,1]x[—1,1] and S is a rotated square contained in U. In [12]
present numerical results which are obtained by applying the scheme (7.26} w: €h
r=1,2,3,4 to the initial data (7.32) with periodic boundary conditions on 2L
These resulis show that indeed small spurious oscillations are generated for =2
at the corners of S; however, it seems to us that they are small enough o be
computationally acceptable.

APPENDIX: AN ALGORITHM FOR RECONSTRUCTION

In this appendix we describe our algorithm for computing the coefficients 5, in

r—1

R(x, W)=Y b, (x—x)" (A1}
k=0
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where x, is the center of the jth cell. To obtain these coefficients we start with
Newton’s form of interpolation
r k—1
H(xu)=Y ul Y Vorid [T (3= x40 (A2)

k=0 1=0

Here i = i( j) is selected by the algorithm (3.4) with respect to the divided differences

d:.k: H[}’,,..., yl+k]' (A3)

In the following we describe an algorithm to rewrite the polynomial on the RHS
of (A.2) as a finite Taylor series around x=x,:

r r

glx)= Y dPux)=3 ¢™(x.)(x—x.) k!, (A4)
k=0 k=0
where
k—1 k
P, (x)= I—[ (Xx—=y,4)= Z t%,k(x—xc)kil- (A.5)
(=0 [=0

Using the fact that the coefficients {%,} satisfy a recursion relation we compute
them as follows: We set

Zi=X.—V,i1 o<igsr—1;

Sou=1, 0<k<r; (o)
then we evaluate

do/=1,r

Si=F 1121,
dok=1I+1,r (A7)
Sk =Fh 1+ A k1 Zi -y

It is easy to see that
() =K Y %y, (A8)

1=k

We note that the algorithm (A.6)-(A.8) is defined for a non-uniform grid. When
the grid is uniform we can obtain (A.8) in two steps: First we take x.= y, and
observe that Z,= —Ih in (A.6); consequently {%,} are independent of i. Denoting

de= hkdl,ka Cp = hk‘](k)(J'l) (A9)
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and using the convention d, =0 for k>, we get for 1 <r<6

co=u(y,)

CI :(?1 '_d2 ’2+[z3/3_‘?4//4+(?5/5—563/6
y=dy—ds+ 11d,/12 — 5d/6 + 137d, /180

ex=ds— 1.5, + 1.75d, — 1.875, (A10)
cy=dy—2ds+17d,/6

cs=ds—2.5d,

ce=dy

Thus

r SV
heqi(x,) =y — (\ "’) : (A1)

Reconstruction via Primitive Function (RP)

In this case I, =(),, ¥,,,) is the jth cell and x =x,=4(y,+ y,, ) is its center.
The given data is

1 My
w,:-—*j () v, (A12)
Yier— Vi<w
from which we evaluate the point values of the primitive function
k-1
Wiy, = z (Fror— 3w, (A.13)
I=0
Applying the algorithm (A.6)}-(A.8) to
A=Wy ¥iii] (A.14)

with i=i(j) selected by (3.4), we obtain the values of ¢'”(x,). Using the definition
(3.8) in (A.4) we get the coefficients of the Taylor expansion in (A.l) by
b

1k

= g%+ (x))/k!. (A.15)

We note that when the grid is uniform y,=x, ,, and we can also use the
algorithm (A.9}-(A.11).
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Reconstruction via Deconvolution (RD)

We recall that RD is used with a uniform grid so that the given data w, can be
thought of as point values w(x,) of the sliding average function (1.3). Applying the
algorithm (A.9)-(A.11) to

dl,/c = W‘[x,-,..., x,+k] (A.16)
with x_ = x, we get in (A.11) for i=i(j— 1) the values of

k dk -
h WH,(xJ-O; w); (A.17a)

when we apply this algorithm with i =i() and x.= x, we get in (A.11) the values of
k

hk Fx—k

H,(x,+0; w). (A.17b)

Next we evaluate D, in (3.15) by taking the min mod of the appropriate values
in (A.17a) and (A.17b). Finally we use the back-substitution (3.19) to obtain the
coefficients of the Taylor expansion {A.1)

1

quk‘_‘H

D, Jh*. (A.18)

We remark that the use of the aigorithms (A.9)(A.11) is preferable to that of
(A.6)-(A.8) since it enables us to save computing time by rearranging the
operations (A.16)-(A.17) as follows: First we set i=1i(j) in (A.16) and evaluate
(A.9)(A.10). Using the same coefficients ¢, in (A.10) we now apply (A.11) to
x,=x, and x,=x,, to obtain (d*/dx*) H,(x,+0;w) and (d*/dx*) H,(x,,, —0; W),
respectively; the min mod operation (3.15) is then performed in a following sweep.
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