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We continue the construction and the analysts of essentially non-osallatory shock capturmg 

methods for the approximation of hyperbohc conservation laws. We present an hierarchy of 

uniformly high-order accurate schemes which generalizes Godun0v.s scheme and its second- 

order accurate MUSCL extension to an arbitrary order of accuracy. The design mvoibes an 

essentially non-oscillatory ptecewlse polynomial reconstruction of the solutton from its cell 

averages, time evolution through an approximate solution of the resultmg initial value 

problem. and averaging of this approximate solution over each cell The reconstruction 

algorithm is derlced from a new mterpolatlon techmque that. when apphed :o piecewtse 

smooth data. gives high-order accuracy whenever the function IS smooth but avolds a Gibbs 

phenomenon at dlscontmuitles. Unlike standard tinite dlfferenc e methods this procedure uses 

an adaptive stencil of grid pomts and, consequently. the resulting schemes are highly non- 

linear. 1: 1987 Academic Press. Inc 

1. IN~RODUCTI~N 

In this paper, the third in a series, we continue to study the use of essentially 

non-oscillatory, uniformly high-order accurate schemes for the numerical 

approximation of weak solutions of hyperbolic systems of conservation laws 

u, +f(u), = 0 i l.?at 

U(_U, 0) = z&)(s). (i.lb) 
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Here U= (u,,..., u,)~ is a state vector and f(u), the flux, is a vector valued 
function of HZ components. The system is hyperbolic in the sense that the m x m 
Jacobian matrix 

has 112 real eigenvalues 

and a complete set of m linearly independent right-eigenvectors { FJu)>F=, . We 
denote by {Ih-(u));2=, the left-eigenvectors of A(u) and assume that IIrk = 6,. 

We assume that the initial value problem (IVP) (1.1) (embedded in an 
appropriate setting which includes entropy considerations) is well posed in the 
sense of Cauchy and that its weak solutions are generically piecewise smooth. We 
denote its evolution operator by E(t), i.e., 

u(., t)=E(t).u,. (1.2) 

Let i?(x) denote the sliding average of M(X) 

(1.3a) 

We note that it is smoother than ~7 by one derivative, and that at the points of 
smoothness 

II’(X) = w(x) + O(h2). (1.3b) 

The sliding average in x of a weak solution of (1.1 ), U(x, t), satisfies 

; U(x, t) + $ [f(u(x + h/2, t)) -f(u(x - h/2, t))] = 0. (1.4) 

Integrating this relation from t to t + z, we get 

U(X, t + T) = U(X, t) - A[~(x + h/2, t; U) -f(~ - h/2, t; u)], (1Sa) 

where A= t/h and 

(1Sb) 

Let {I, x [t,,, t,,, i] >, where I, = IX,- i,,?, x,+ iiz], and x, = ah, t, = nz, be a par- 
tition of R x R +. Writing relation (1.5) at .x = x~, t = rIz we get 

ti”+%i;r-A[p(xJ+lp rn; u)-p(x~,-1j2. t,; u)]. 
J 

(1.6a) 
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Here 

(1.61s) 

is the “cell-average” of ~4 at time t,,. 
In this paper we describe a class of numerical schemes that generalizes 

Godunov’s scheme [S] and its second-order extensions [22: 4, 151 to any finite 
order of accuracy. These schemes can be written in standard conservation form 

u” + l = v; - A( f, + 1 yJ I -s;- 1 z) ZE (E,(T). c”),. (1.7a) 

Here E,(r) denotes the numerical solution operator and .f,+ I ‘?, the numerical flux. 
denotes a function of 2k variables 

which is consistent with the flux .f( u) in (1.1) in the sense that f(~4, u:..., u) =I( II ). 

We design these schemes so that the conservation form (1.7a) will approximate 
(1.5) to a high order of accuracy. Setting UJ = $’ in (1.7) and comparing it to (1.6) 
we see that if the numerical flux ( 1.7b) can be expanded as 

then 

( l.Ba) then the truncation error This shows that if the numerical flux S, + 1 ,z satisfies 
in the sense of cell averages is 

+,, t,, + 5) - [y&(T) c( ‘, t,)], = r+f(X,, L 2) - -d(s,_,,)]h’+O(i~‘+‘j, (1.8b) 

which is O(/zr+ ‘) where d(x) is Lipschitz continuous. 
When f(u) is a nonlinear function of 24, the approximation of .?(x~+ I ?. t,; u) to 

O(hrj requires knowledge of pointwise values of the solution to the same order of 
accuracy. In order to design a numerical flux that satisfies (1.8a), we must extract 
high order accurate pointwise information from the given {~~;j, which are 
approximations to (ii,“>, the cell averages (1.6b) of the solution. Solving this 
reconstruction problem to an arbitrarily high order of accuracy r, without introduc- 
ing O(1) Gibbs-like spurious oscillations at points of discontinuity, is the most 
important step in the design of our new schemes. 

Given “; = M’(.Y]), ceil averages of a piecewise smooth function IV(X), we construct 
R(x; +), a piecewise polynomial function of x of uniform polynomial degree (r - I ) 
that satisfies: 
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(i) At all points x for which there is a neighborhood where u’ is smooth 

R(x; M’) = w(x) + e(x) 11’ + 0(/z’+ I). (1.9a) 

(ii) Conservation in the sense of 

R(,lci; 17,) = 6, (1.9b) 

here R denotes the sliding average (1.3) of R. 

(iii) It is essentially non-oscillatory 

TV-(R( .; @)) d TV(w) + O(K), (1.9c) 

where TV denotes total variation in s. 
The inequality (1.9~) implies that the reconstruction R is essentially non- 

oscillatory in the sense that it does not have a Gibbs-like phenomenon of 
generating O(1) spurious oscillations at points of discontinuity that are propor- 
tional to the size of the jump there. In [16, 11, 171 we describe R(x; 12’) in the scalar 
case. We show there that R may occasionally produce O(K) spurious oscillations 
which are on the level of the truncation error. These small spurious oscillations may 
occur only in the smooth part of it’ and they usually disappear once N(X) is ade- 
quately resolved on the computational mesh. For sake of completeness we review 
this reconstruction algorithm in Section 3; we shall extend it to vector functions 
u,(x) in Section 5 of this paper. 

Using the reconstruction (1.9) we can express the abstract form of our new 
schemes by 

E,(z).M’~z4,~.E(z). R(.;G). (1.10) 

Here A, is the cell-averaging operator on the RHS of (1.3), E(t) is the exact 
evolution operator (l-2), and w is any piecewise smooth function of s. These 
schemes are a generalization of Godunov’s scheme and its second-order extensions 
in the sense that (1.10) with the first-order accurate piecewise constant reconstruc- 
tion 

R(x; ii;) = E, for x,-I;2 <X(X,+ ii2 (1.11) 

is exactly Godunov’s schemes [S]; (1.10) with the second-order accurate piecewise 
linear reconstruction 

R(x; W) = I?, +5,(x - x,) for x,~,~~~x~.Y~+,~~ (1.12a) 

such that 

(1.12b) 
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is the abstract form of the second-order extensions to Godunov’s scheme described 
in [22,4, and 151. 

We recall that the evolution operator E(t) is monotone in the scalar case. Since 
A,: the cell-averaging operator is also monotone we see that in the scalar case 

TV@,(T) C)= Tvi/(A,.E(T).R(.;li-))6 TV(R(.; 2)). (1.14aj 

If M: in (1.13a) is the sliding average of a piecewise smooth function In. it 
follows then from (1.9~) that 

TV(E’,(r) ti,) < TV(w) + O(l7’). (1,:,3b) 

This shows that the schemes (1.10) in the scalar case are essentially non- 
oscillatory in exactly the same way as the reconstruction: They do not have a 
Gibbs-like phenomenon at discontinuities, yet they may occasionally produce small 
spurious oscillations on the level 0(/z’) of the trunction error (see Remark I.3 at the 
end of this section). 

Equation (1.10) is the abstract operator expression of a scheme in the conser- 
vation form (1.7). Although the scheme generates discrete values P;, which are rth 
order accurate approximations to the cell-averages ti;, its operation involves a 
globally defined pointwise approximation to u(x. t) of the same order of accuracy, 
which we denote by u,(.u, t). The latter is defined for all x’ in the time-strips 
I,, d f -=c t,, + 1 i with a possible discontinuity at irk]: we shall use the standard 
notation v,(x, t,fO) to distinguish between the two possibly different values. 

We define LJJX, t) via the following algorithmic description of the scheme ( l.!O). 
We start by setting 

up = i&(x,). 

where u. is the given initial datum (l.lb), and ti, is its sliding average (1.3a). 
Having defined c” = {L 5 >, approximation to {ti; 3 in ( 1.6b), we proceed to evaluate 
1) n +’ by the following three steps: 

(i) Reconstruction. Define 

L’Jx, r,, + 0) = R(x; c”), (1.14aj 

Note that u,(x, t, + 0) is a pointwise approximation to u(x, t,,). 
(ii) Solution in the small. For t, < t < t, + T = t,, + I ~ define 

u/J.; t) = E(t - t,i). L’/J ~; t,, + 0). (1.14br 

(iii) Cell atleragirzg. Close the time loop of the algorithm by defining 

gl+1,- 
J V/s-~, ; t,, f 1 Kh(X, t,, + 1 - 0) d*x. jl.ircc) 
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We note that v,~, being an exact solution of (1.1) in t,, < t < t,, ,, satisfies (1.5) in 
this strip. Using the conservation property (1.9b) of the reconstruction in (l.l4a), 
i.e., 

U,,(.Y,, t, + 0) = v;, (1.15) 

we get from (1.5) that the schemes (1.10) and (1.14) satisfy the conservation form 

u~+1=t~--(~+I!z-s;-l,2) (1.16a) 

with the numerical flux 

We turn now to examine the local truncation error of the scheme. For this pur- 
pose we consider a single application of (1.14) starting with v,” E ti;, the exact celi 
averages of the solution. It follows from (1.9a) and (1.14a) that 

v,(x, tn + 0) = u(x, t,,) + e(x) h’+ O(h’+ 1). (1.17a) 

The definition (1.14b) and our assumption of the well-posedness of the IVP (1.1) 
imply that 

v,,(x, t) = u(x, t) + O(h’) for t,, d t < t, + , . (1.17b) 

This in turn implies that the numerical flux (1.16b) of the scheme satisfies (1.8a), 
i.e.. 

J + I!2 = Pe ,+I;29 ~,;~)+d(~,+~~~)lz’+O(h’+~). (1.17c) 

Clearly non-smoothness of d(x) in ( 1.17~) can result only from non-smoothness 
of the coefficient e(x) in (1.17a). It follows then from (1.8b) that away from points 
of discontinuity and points at which e(.u) fails to be Lipschitz continuous, the local 
truncation error in the sense of cell-averages is O(h’+ I). 

Let u(x, t) be a smooth solution of (1.1) and let us suppose that as h + 0, 
z= 0(/z), the numerical approximation converges pointwise to u(x, t). If e(x) is 
globally Lipschitz continuous then the local truncation error in the sense of cell 
averages is globally O(h’+ ‘). At time t, after performing N = t/t time-steps, we 
expect the cumulative error to be O(k), i.e., 

vi” = U(x,, t,h/) + o(hr) (1.18a) 

In this case we see from (1.9a) that 

v,Jx, t, + 0) = R(x; v”) = u(x, tN) + O(h’). (1.18b) 
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Thus at the end of the computation we have two sets of output data at our dis- 
posal: (i) discrete values {I$‘} that approximate (ti(x,, t,)) to 0(/z’) and (ii) a 
piecewise polynomial function of x, R(x; u”‘j, that approximates u(x, tN) to O(Sr’f. 

Remark. 1.1. Note that ( 1.8) is quite different from the truncation error in a 
pointwise sense which is used in formulating Lax-Wendroff-type schemes [20. 2!]. 
There we take u/” = u(x,, t,) and require t;“” = u(x,, f,*+ I) + O(h’+ ’ j. To accom- 
plish that we need a numerical flux that satisfies 

We shall see in the following that condition (l.ga) for the accuracy in a cell-average 
sense is more manageable in many respects. 

Remark 1.2. When e(x) fails to be Lipschitz contmuous at a point, the local 
truncation error (1.8b) is only O(F). In the MUSCL-type schemes [22, 4] this hap- 
pens at local extremum points; in higher order accurate schemes this may occur at 
roots of higher derivatives of u (see [ 15, 111). Due to local accumulation we expect 
the pointwise error at time t, after N= r/z time-steps, to be only 0(/z’ - ‘) at such 
points. Away from these points we expect the pointwise cumulative error to remain 
O(F). Consequently the scheme is (r- 1)th order accurate in the maximum norm. 
Because of the non-oscillatory nature of the schemes. we expect the number of 
points where e(x) fails to be Lipschitz-continuous to remain bounded as h --, 0. In 
this case the L,-norm of the cumulative error is O(F). To distinguish between 
schemes that are rth order accurate in the usual pointwise sense, and those that are 
rth order accurate in the L,-norm but only (r- 1)th accurate in the maximum 
norm, we shall use “rth order accurate” for the latter, thus qualifying the difference 
by the use of quotation marks. 

Remark 1.3. It is well known that if the total variation of the numerica? 
approximation is uniformly bounded, i.e., 

TV(u,(., t)) d c. TV(u,~, (1.19) 

where the constant C is independent of h for 0 6 t d T, then any refinement 
sequence I? -+O, z = O(h) has a subsequence that converges in Lp’ to a weak 
solution of (1.1). Therefore uniform boundedness of the total variation is an 
appropriate sense of stability for numerical approximations to discontinuous 
solutions of ( 1.1); see [9, lo] and the references cited there. 

Inequality (1.13) shows that the total variation of our new schemes is dominated 
by that of reconstruction step 

TV(U”+~)< TV(R(.; 0”)). (i.20) 
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When R is the piecewise-constant function (1.11) or the piecewise-linear function 
(1.12) (where the slope s, is that of the MUSCL scheme) then 

TV(R(-;u))< TV(u) (1.21a) 

for any function u of bounded total variation. Consequently Godunov’s scheme and 
the MUSCL scheme are total variation diminishing (TVD) in the scalar case 

TV( un + ’ ) < TV(v”); (1.21b) 

this trivially implies (1.19) with C= 1. 
In proving relation (1.9~) for higher order reconstructions we have used the 

assumption that for h sufficiently small there are at least r + 1 points of smoothness 
between discontinuities. Consequently we cannot apply this result to the numerical 
solution v”. Nevertheless, based on heuristic analysis and extensive numerical 
experimentation, we conjecture that in the scalar case 

TV(V”+ I) < TV(u”) + 0(/P + ‘) (1.22) 

for some p > 0. 

2. REVIEW AND OVERVIEW 

In [ 1.51, the first paper of this series, we present a second-order accurate scheme 
which is strictly non-oscillatory in the scalar case (nz = l), i.e., 

N,( zf + ’ ) d N,( fly, P-1) 

where N,(u) denotes the number of local extreme in v. This scheme is a 
modification of the “second-order accurate” MUSCL scheme [22,4], which is 
total-variation-diminishing (TVD) in the scalar case, i.e., 

TV(L~I”+‘)< TV(/(v”). (2.2) 

In order to enforce (2.2), the slope s, (1.12a) in the MUSCL scheme is subjected to 
a so called “limiter.” Due to the operation of this limiter, the coefficient in the O(h) 
term in the Taylor expansion (1.12b) becomes discontinuous at local extrema: Con- 
sequently e(x) in (1.9a) fails to be Lipschitz continuous at such points, which leads 
to a loss of accuracy at local extrema. In [15] this difficulty is circumvented by 
using a modified slope s, in (1.12a) which satisfies 

s, = w,(x,) + O(h2), (2.3) 

thus leading to a globally smooth e(-x) in (1.9a). 
Although the end result is a simple technical modification of the formula for the 

slope s,, the design of the scheme in [15] invokes major conceptual changes. 
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Realizing that TVD schemes, independent of their particular form, are necessarily 
only first-order accurate at local extrema, we seek a weaker notion of control over 
possible growth of the total variation of the numerical solution. For this purpose 
we introduce the notion of non-oscillatory schemes, which satisfy in the scalar case 
for piecewise smooth iv, 

TV(E,,(r). G) < Tic’(w) + Of/z’) (2.4) 

rather than (2.2). In [16], the second paper in this series, we show that even the 
notion of (strictly) non-oscillatory schemes (2.1) is too restrictive in the sense that kr 
limits the order of accuracy to 2. To enable the design of higher order accurate 
schemes we then introduce the notion of essentially non-oscillatory schemes (1.13 1, 
which excludes a Gibbs-like phenomenon but allows for the production of spurious 
oscillations on the level of the truncation error. 

Another conceptual change is the removal of the “monotonicity limiters” which 
are an essential part of TVD schemes [30] and may cause a reduction of the order 
of accuracy at some points. Our new schemes are of uniform order of accuracy r. 
The control over possible growth of the total variation of the numerical solution is 
obtained by an adaptive stencil that at each point attempts to use the smoothest 
information available. This adaptive selection of stencil is introduced to the 
algorithm through the reconstruction step (1.14a). The number of points in ‘:he 
stencil, independent of its orientation, is always (r + 1). 

In [16]. the second paper in the series, we investigate the stability of our new 
schemes in the scalar constant coefficient case 

II, + au, = 0. a = constant. (2.5zi) 

The exact evolution operator (1.2) in this case is just a translation with the constant 
speed a. Therefore our schemes (1.14) take the particularly simple form 

Due to the adaptive selection of stencil in the reconstruction step, the scheme 
(1.23b) is highly nonlinear; consequently the use of the standard linear stability 
analysis is inappropriate. We demonstrate this point in [ 161 by choosing initial 
data for which the reconstruction algorithm selects a stencil that is biased :n the 
“down-wind” direction (i.e., in the direction opposite to that of the wind); a con- 
stant choice of such a stencil is notoriously unstable. Such an instability usually 
exhibits itself by the production of increasing oscillations which start at the highest 
derivative and propagate to the function itself. The numerical experiment in Eli;] 
shows that once these oscillations begin to appear on the level of the highest 
derivative, the adaptive selection of stencil in (2Sb) reacts by changing the orien- 
tation of the stencil and thus avoids the buildup of instability. 

In [ 161 we also investigate the initial-boundary value problem (IBVP) for (2.5a). 
Unlike the treatment of boundaries in standard finite-difference schemes we do not 
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use “numerical boundary conditions.” Instead we modify the scheme (2.5b) by 
restricting the selection of the stencil to available information. As a result the 
scheme is biased “against the wind” at one of the two boundaries. Nevertheless, 
numerical experiments show the scheme to be strongly stable. 

In the present paper, the third in the series, we turn to consider the general non- 
linear case. The abstract form of our schemes, (1.10) and (1.14), call for the 
evaluation of the exact solution in the mad (i.e., for 0 ,< t < r, r small) of the IVP 
(1.1) with the initial data R(x; u”); the latter is a piecewise polynomial function of x 
with possible discontinuities at (x, + 1,2 >. 

When R(x; 0”) is the piecewise-constant function (1.11) (i.e., Godunov’s scheme), 
we can express this solution in terms of local solutions to the Riemann problem 

4+f(uL=O, z4(-‘c, 0) = 
i 
U,” x<o 
v,~ 

It 1 x>O’ 
(2.7) 

When R(x; ~1”) is a piecewise polynomial function of higher degree we cannot in 
general express the solution of the IVP (1.1) in a simple closed form. Nevertheless, 
(see Cl, 61) we can obtain a local Taylor expansion of the solution to any desired 
order of accuracy. 

We note, however, that the step of “solution-in-the-small” (1.14b) is followed by 
the step of “cell-averaging” (1.14~). Consequently many of the line details of the 
exact solution, which may be very costly to compute, are later ignored in evaluating 
v”+ ’ by averaging the exact solution over (s,_ ,12, x,+ 1,2). To economize on the cost 
of our schemes it makes sense to use simplified approximate “solvers” that carry 
only this information which determines the value of the cell average, namely the 
one needed to compute a numerical flux satisfying (1.17~). The study of such 
approximate solvers is a main issue of the present paper. In Section 4 we consider 
the scalar case; in Section 5 we extend the scheme to hyperbolic systems of conser- 
vation laws. 

When we consider the reconstruction (1.9) in the context of approximation of 
functions, the assumption that )$(x) is piecewise smooth with a finite number of dis- 
continuities implies that for h sufficiently small there are at least (r+ 1) points of 
smoothness separating discontinuities on the computational grid. Therefore at any 
point of smoothness it is possible to select a stencil from the smooth part of the 
function. Although the x behavior of weak solutions of (1.1) is generically of this 
type, their time dependence allows for collision of discontinuities, as well as their 
collision with a boundary, e.g., solid walls. For points in a region between two dis- 
continuities that are about to collide, no matter how small h is, there must come a 
time when there are not enough points to select a stencil of (Y + 1) points from the 
region of smoothness. Consequently, a component-wise extension of the scalar 
reconstruction algorithm in [16] to vector functions may produce large spurious 
oscillations during this brief encounter. 

The elimination of such spurious oscillations has been a major consideration in 
designing the extension of our scalar schemes to systems of conservation laws. In 
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Section 5 we show that this can be accomplished to a great extent by extending the 
scalar reconstruction algorithms to systems via the use of locally defined charac- 
teristic variables. 

In Section 6 we describe in detail the algorithm for the solution of the Euler 
equations of gas dynamics. In Section 7 we present some numerical experiments. 

In future papers we shall present the extension of these schemes to two-dimen- 
sional problems and study the dependence of the computational efficiency on the 
order of accuracy of the scheme. 

3. RECONSTRUCTION 

In this section we present a brief description of the reconstruction Rjx; ,vj to be 
used in (1.14a); we refer the reader to [ 16, 11, 171 for more details and analysis. 
For this purpose we introduce H,,(x; ii,), a piecewise polynomial function of Y that 
interpolates u’ at the points {x,>, i.e., 

H,(x,; w) = w(x,). (3.la) 

where a,,., + l :2 is a polynomial in x of degree m. 
We take qm,,+ li2 to be the (unique) mth degree polynomial that interpolates W(X) 

at the (rz + 1) successive points (x,}, i,,(j) < i < i,,,(j) -I- IPI, that include X, and x, T, _ 
i.e., 

4 m,,+ 1,2(x,; w) = w(x,) for i,(j) d i G t,,,(j) + ~72. (3.2a) 

1 -m<i,(j)-j<o. (3.2%) 

Clearly there are exactly n? such polynomials corresponding to the m different 
choices of i,(j) subject to (3.2b). This freedom is used to assign to (x,, x,+ i) a sten- 
cil of (m + I) points (3.2) so that W(X) is “smoothest” in (xi,,,). s,,~,(,)+~~) in some 
asymptotic sense. 

The information about smoothness of it’(~) is extracted from a table of divided 
differences of W. The latter can be defined recursively by 

w[x,] = w(x,) (33) 

WCX ,,..., -u,+,]=(bt’[x,+* ,.‘.., Y,+k]-II![X,,...,X,+kkI])!!(X1+k--S,). (3.3b) 

It is well known that if 1%’ is C, in [x,, x,,~] then 
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However if 1~ has a jump discontinuity in the pth derivative in this interval, 
O<p<k, then 

w[x,,-., x, + k ] = O(h--k+p[w’(q); (3.3d) 

here [w”“] denotes the jump in the pth derivative. Equations (3.3c)-(3.3d) show 
that (w[x,,..., x~+~][ p rovides an asymptotic measure of the smoothness of w in 
(x1% Xi+k)t in the sense that if w is smooth in (x,, , x,, + k) but is discontinuous in 
(-x,)3 -xQ+k 3 ) then for h sufficiently small ()I’[x~~,..., x,,+,Jl < ]MJ[s,~,..., xj2fk]l. Hence 
the problem of choosing a stencil of points for which ~1 is “smoothest” is basically 
the same as that of finding an interval in which 1~ has the “smallest divided differen- 
ces” (see [ 16. 1 l] for more details). 

In [ 1 l] we propose the following recursive algorithm to evaluate i,,(j). We start 
by setting 

ilij) = j, (3.4a) 

i.e., qLT1 + ,iz is the first-degree polynomial interpolating H’ at x, and x, + , . Let us 
assume that we have already defined ik( j), i.e., q,,, + I,,2 is the kth degree polynomial 
interpolating 12) at 

X ‘k(J)‘“” *‘ik(J) + k’ 

We consider now as candidates for qk + ,,J+ 1,‘2 the two (k + 1 )th degree polynomials 
obtained by adding to the above stencil the neighboring point to the left or the one 
to the right; this corresponds to setting i. k + l(j) = i&j) - 1 or ix- + i(j) = ik(j), respec- 
tively. We choose the one that gives a (k + 1)th order divided difference that is 
smaller in absolute value, i.e., 

In [ 161 we analyze this interpolation technique for a piecewise smooth function 
iv and show that: 

(i) wherever w(x) is smooth 

$ H,(x; w) = -$ w(x) + O(h”‘+ ’ k), O<k<m; 

(ii) H,Jx; KY) is an essentially non-oscillatory interpolation of 1~ in the sense 
that 

TV(H,( .; w)) f TV(w) + O(h’-+l). (3Sb) 

We turn now to describe two different techniques to solve the reconstruction 
problem (1.9) in terms of interpolation. (See Appendix for an algorithmic descrip- 
tion.) 
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(1) Reconstruction via a Primititle Function 

Given ceil averages I?, of a piecewise smooth function M’ 

1T,=$ [+‘~‘lv(y)dy, h,=h;+,,,-x,~,~,, 
J *-r,- L 2 

(3.6 

we can immediately evaluate the point values of the primitive function LV’(x) 

(3.7a 

FV(X ,+I.?)= i: h,lT,. (3.7bj 
I = 10 

Since 

It’(X) = g W(x) 

we apply interpolation to the point values (3.7b) of the primitive function W!s) 
(3.7a) and then obtain an approximation to u(xj by defining 

We note that this procedure does not require uniformity of the mesh. 
The primitivre function W(s) is one derivative smoother than ns(.u). therefore it 

follows from (3.5a) that wherever kV’(x) is smooth 

thus we get from the definition (3.8) that 

which implies (1.9a) for 1= 0. 
The conservation property of the reconstruction ( 1.9b) follows immediately from 

the definition (3.8): 
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The non-oscillatory nature of the reconstruction (1.9~) follows primarily from the 
non-oscillatory nature of the interpolation (3Sb), see [16]. 

We denote the reconstruction via the primitive function (3.8) by RP. 

(2) Reconstruction via Deconvolution 

We assume that the mesh is uniform and consider the given cell averages )?I to be 
point values of G(x), the globally defined sliding-average function (1.3) of )v, i.e., 

“‘i = q x,), (3.11a) 

where 

u’(x) = - t, i “’ w(x+ J’) dy. 
h,‘2 

Expanding KJ(X + JJ) in (3.11 b) around J’ = 0, we get 

C-Z ,v(k)(~) 

M?(x) = 1 ___ 

h/2 

k=O k! --k/2 k=O 

where 

i 

0 k odd 
ak = 

2mmk/(k + l)! k even. 

(3.11b) 

(3.12a) 

(3.12b) 

Multiplying both sides of (3.12a) by h’d’/dx’ and then truncating the expansion in 
the RHS at O(F), we get 

r-l- 1 
hW’(x) = c akhk+wk+fy.r) + O(h’). 

k=O 

(3.13a) 

Writing the relations (3.13a) for I= O,..., r - 1 in a matrix form, we obtain 

.I 0 . . 
-. . 

0 
I 

+ O(h’). 

(3.13b) 

Let us denote the coefficient matrix in the RHS of (3.13b) by C. This matrix is 
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upper triangular and diagonally dominant. Multiplying both sides of (3.13b) by 
Cm-’ from the left we get 

Given E, we interpolate G(x) by H,,(x; M’) with KV 2 Y - 1 Since M’(S) is smoother 
than U,(X) it follows from (3.5a) that 

wherever a(x) is smooth. We note that although H,,, is only continuous at s,. the 
one-sided derivatives at X, + 0 do satisfy the above relations, i.e., 

Next we define 

where M(x, yj is the min mod function 

Clearly 

M(.Y, y) = 
s.min((.u(, 1.~1) if sgn(x)=sgn(J)=s 
o 

otherwise. 
(3.46) 

D[,-, = hW’(.Y,) + O( 12’ i: (3.17ai 

using B, = (Di, ,,,..., B , ~ ,,,)T to approximate the vector. on the RHS of (3.13~) we 
get that 

D =CpLD 
J J 

(3.17b! 

satisfies 

D, = (w(xi), /w’(x,)...., /I’- lu~“-“(,~~))‘+ O(h’). (3,:7c) 
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Finally we define 

r-l 1 
R(x; G) = k;, G Daj[(x - Xj)/h]” for Ix - xjl < h/2. (3.18) 

We note that since C is upper triangular D,, in (3.17b) can be computed by 
back-substitution, i.e., we set 

D 
r--l./ 

=B 
r- I,/ (3.19a) 

and then compute for k = r - 2,..., 0 

r-1 
Dk,J = Dk.J- 1 “rD[,,. 

I=k+l 

(3.19b) 

It follows immediately from the definition (3.18) and the relations (3.17a) that 
wherever NJ(X) is smooth 

;, R(.u; IF) = ;[ w(x) + O(h’-‘); 

this for I= 0 implies (1.9a). The conservation property of the reconstruction (1.9b) 
follows from 

= DO,/ = c/. (3.21) 

The last two equalities in (3.21) follow from (3.19b) with k=O and (3.15a). 
The non-oscillatory nature of the reconstruction (1.9~) follows primarily from the 

non-oscillatory nature of the interpolation H,,(s; I?); see [ 161 for more details. 
We note that E(X) is the convolution of IV(X) with e,>(x), the characteristic 

function of a cell, i.e., 

G(x) = (M? * $A)(X) (3.22a) 

$/Jx)= i’” 
i 

for 1x1 < h/2. 
for (xl >/z/2 

(3.22b) 

Hence (3.13~) is actually a deconvolution to O(K). Therefore we refer to (3.18) as 
reconstruction via deconvoiution and denote it by RD. 

Remark 3.1. We note that for RP with m = r and RD with m = r - 1 the coef- 
ficient e(x) of h’ in the reconstruction error (1.9a) is discontinuous at points where 
there is a change of orientation in the stencil of the associated interpolation; this 
may happen at critical points of the function and its derivatives. Hence the resulting 
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schemes (1.14) are .‘rth order accurate” (See Remark 1.4). On the other hand, 
with m = r yield e(x) which is globally Lipschitz continuous, thus resulting in 
schemes that are rth order accurate in a pointwise sense. This follows from the fact 
that (3.17a) is upgraded to 

D,, = hW’( x) + o(hr + ’ ) (3.23! 

which has the effect of pushing the non-smoothness due to the change of stenci! 
orientation in the associated interpolation to the O(h’+ ‘) level. 

Remark 3.2. We note that both RD with r = 2, m = 1 and RP with r = 2 are 
piecewise linear reconstructions of the form (1.12). The slope s, for RD is identical 
to that of the “2nd-order accurate” TVD scheme in [S]. The slope for RP is the 
same as that of RD except at local extrema, where s, = 0 for RD while for RP 

Although RP does not “chop” local extrema as RD, the lack of smoothness in 
(3.24) results in the same loss of accuracy at local extrema. 

We note that RD with m = r = 2 is essentially the same reconstruction that gives 
the non-oscillatory second-order accurate scheme of [IlS]. 

4. SCALAR CONSERVATION LAWS 

The abstract form of our scheme calls in (1.14b) for the evaluation of the exact 
solution in the small of the IVP (1.1) with the initial data Rjx; L”‘). This step is 
followed by the cell-averaging operation in (1.14~) which results in the conservation 
form (1.16). Thus we are spared the task of having to compute a global solution. 
All we need to do is evaluate 

To simplify our notation let us denote c,(x, t,, + t) by U(X, t). Thus a(s, 1) is the 
solution of 

L’, +f(t7), = 0 (4.2a) 

with the piecewise-polynomial initial data 

r-1 
z’(x, 0) = R(x; 0”) = c bj,,(x - x,)//l! for .~~i~<x<.‘i/+~~ ! 4.2b ) 

/=O 

in the time strip --co <X-CZJ, O<t<t, z small. 
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The solution U(X, t), for sufficiently small T, is composed of sections of 
smoothness separated by “fans” that emerge from the discontinuities at {x,, ,,* j. 
We use here the term “fan” loosely, allowing a “fan” with zero spread which is just 
a curve. In the linear case discontinuities propagate along characteristic curves; in 
this case all the “fans” are just curves. In the nonlinear case the “fans” with zero 
spread are shock curves, while “fans” with positive spread are rarefaction fans-or 
possibly a succession of rarefaction fans separated by contact shocks in the case of 
nonconvex flux. We denote by u,(x, t) the section of smoothness of v(x. t) that is 
connected to the polynomial data in (.u,- ,!*, .x,+ ,;*). 

A global description of u(x, t) can be quite complicated. Fortunately all we need 
is v(x,+ ,!2, t) for small t, which can be easily described in terms of 0,(x, t), vJ+ r(.x, t) 
and the “fan” eminating from .Y = x,+ r,,? at t = 0 as follows: If for t > 0 the “fan” 
stays to the right of X=X,+ ,,‘: then v(.v,+ 1!2, t) = u,(x~+ r,,>, t); if this “fan” stays to 
the left of x = X, + , ,2 then v(x, + I,2, t) = 21, + ,(x, + 1,‘2, t); if the “fan” covers x = X, + 1,,2, 
then u(s,+ riz, t) = constant = I/(0; u,(x,+ 1,2, 0), L’,+ 1(~~,+ Ir 0)). Here V(x/t; uL, u,) 
denotes the self-similar solution of the Riemann problem 

ur+f(u),=O, u(x,O)= uL 
i 

x < 0 

llu x > 0, 
(4.3) 

with constant uL and ZIP. We note that the “fan” covers x = ,yj+ li2 only when it con- 
tains a sonic centered rarefaction wave (i.e., one that includes a point for which 
f’ = 0); this wave retains its self-similar form as long as it does not interact with 
shocks. Therefore if we choose r sufficiently small so that no shock crosses 
x=.Y,,1;2 for 0 < t < r, we can express .f( V(X, + ,12, t)) by 

f( u(s ,+ Ii27 t)) 

1 

m,cx,+ I,‘23 t)) “fan” stays to the right of x = X, + ,,,2 

= P(L;&+1/2, 01, L:+l(X,~t1,‘2, 0)) “fan” covers x = x1 + ,12. 

f(c’,+I(-~,+L<2? t), “fan” stays to the left of x = X, + r S2 

(4.4) 

Here f R denotes the flux at x = 0 of the solution to the Riemann problem (4.3), i.e., 

f R(U,, 112) =f( vo; Ul, u2)); (4.5) 

using the formula in [23] it can be expressed by 

(4.6a) 

Whenf(u) is a convex function of u, i.e., f”(u) > 0, f(z4) may have only a single local 
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extremum which is a minimum; let us denote its location by ~1,. Using this fact in 
(4.6a) we can express JR(ur. ~1~) in the convex case by 

Here 

is the speed of the shock with uL = 1~~ and 14 R = u, in (4..3). W-e remark that (4.4) is 
deliberately formulated in terms off( c’(.Y,+ 1 ?, t )) rather than LT(S, + L ?, t ) in order to 
remove ambiguity in the definition when v is discontinuous at s,, , ?. The con- 
tinuity of f(t)) in this case follows from the RankineHugoniot relation for a 
stationary shock. 

We turn now to derive a simple but adequate approximation to the numerical 
flux (4.1), which is 

with the integrand given by (4.4). Note that the integrand is a smooth function of ;, 
The first step is to discretize the integral in (4.8) by using a numerical quadrature 

1 “I - J g(r)dt= &c- a;(kg(flkrj+(;d(s’): 
r cl L=O 

The second step is to approximate ZT,(I, t) in (4.4) by its Taylor expansion whrch 
is obtained by the following local Cauchy-Kowalewski procedure. We start by 
expressing ii’t’(.~, 0)iS.u at s, by 

Next we use (4.11a) to evaluate 

d’v 

dsk at/-k (-‘I> ‘) forallIandOdk<f i4.1 lb, 
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by taking derivatives of the partial differential equation (l.la) in the following 
ordered way 

v, = -ftv, 

V ‘cl = -Cf”(V,) +f’~,.rl 

vu= -C.f-“~t~.~+f’~,tl 

V XII = -IIf”‘(v.d3 + 3f”u.v.y.x +f’Dxx.J 

L’.W = -[f”‘(V.yV[ +f”(2V,u., + vtvx,) +f’v,,I] 

vu, = -cf”‘(uI)2v.y +f”~2UlvXf + v,u,I) +f’vxII1 

etc., 

(4.11c) 

and then compute (4.11b) by successively evaluating the RHS of (4.11~); note that 
this procedure always uses known values which are either initially given by (4.11a) 
or previously computed in the algorithm (4.1 Ic). We observe that 

r-’ / a’v(x,,o) (X-x,)k t’-” 
‘,@, [) = ,;. ,c, axk 8+-k ___ k, . (Z-k)! 

(4.12a) 

satisfies 

6,(x, 0) = v,(x, 0) = v(x, 0) for .~,-I~r<x<x,+,12, (4.12b) 

and that 

6,(x, t) = V,(X, t) + O(P), (4.12c) 

wherever v,(x, t) is well defined. 
The last step in our derivation of the numerical flux is to approximate 

.f(~(-~;+~;~, I)) in (4.4) by 

f( Ll(S I+ L:‘2. t)) ?f”bq,q+ ,,2, t), G,+ ,(x1+ 1,‘2, t)), (4.13) 

wherefR is (4.5)-(4.6). The resulting numerical scheme is 

(4.14a) 

f,+ L/2 = : ClkfR@l(-y,+ L,‘2, Bk.r), fi,+ ,b,+,,~r PkT)). 
k=O 

(4.14b) 

In the following we show that the numerical flux J+ ,;2 in (4.14b) is an adequate 
approximation to the “abstract numerical flux” (4.1). 

We start by proving that the scheme (4.14) is rth order accurate in the sense of 
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(1.8). To do so we take in (4.14) P;= 11(x,, t,), where 24(x, f) is a smooth (either 
globally or locally) solution of (1.1) and show that 

s,,,;,=~jb’f(u(.~,+~~~, ~,+v))~~tO(u. (4.!5) 

When we apply the reconstruction R to ti” we get (3.9) and (3.20) that 

-$ R(s; U”) =g u(x, t,,) + o(rk) for O<kdr- I. (4.:Sa 

Consequently it follows from the Cauchy-Kowalewsk 
7 = O(h) that 

procedure (4.11)-(4.12) and 

.fRh ~2) is Lipschitz-continuous with respect to ul and ul? and it IS consistent 
withf(u) in the sense that fR(u, u) =f(u); therefore 

fRh z1~)=f(U)+O(IzI-z4,( + lu-ul(). (4.16cj 

Applying (4.16~) to (4.16b) we get that 

f”@,Ly+m, f), ii,,,(-U,+I.25 N=f(zO,+, 2, t,,+tl)+O(h’). (4.16d) 

Finally using the assumed smoothness of u(x, t) and the order of accuracy of :he 
numerical quadrature (4.9) we obtain (4.15). 

Next we consider the constant coefficient case 

L’, + ill’,, = 0, a = constant. (4.:la) 

Here the “fan“ in (4.4) is the characteristic line 

and 

U,(.Y, t) = u(x - Uf, 0) = R(s - at; d’) for sIPI I(tI<.~<.~~,+, Jr). 14.17~) 

Since t’,(~~ t) in (4.17~) is a polynomial of degree Y- 1 in (Y- at) we get that 

d'c 
&" &l-k = 0 for i>r; 

this implies in (4.11 j-(4.12) that 

fi,(x. t) = L-,(x, t). (41&i) 



252 

Hence 

HARTEN ET AL. 

Since the numerical quadrature (4.9) is exact for polynomials of degree r- 1 we get 
that the numerical flux S,+ ,,‘2 (4.14b) is identical to (4.8). It follows then that the 
numerical scheme (4.14) in the constant coefficient case is the “abstract scheme” 
(1.14), (1.16), i.e., 

2.y + ’ = W(x, - UT; u”). (4.18~) 

We observe that since the “fans” in the solution U(X, t) in the constant coeflicient 
case have zero spread, the evaluation of f(v(s,+ i,‘*, t)) in (4.4) involves only the 
smooth parts of the solution 0,(x, t). The “fans” in the numerical approximation 
mark the domain of validity of the Taylor expansions 6,(x, t). Therefore the only 
role of the Riemann solver in the formulation of the numerical flux (4.14b) 

fR(17,(x ,+ 1 2, fh ‘;,+ ICY,, ,:2> 1)) = i 
fu++ 127 t,) 
Aa,+ 1(-y,+ L 27 t)) 

;; -; (4.19) 

is to serve as a pointer, i.e., to identify whether X=-X,+ ,,2 falls into the domain of 
validity of L7, or into that of E, + , . Since F,(x,+ ,, 2, t) = u(,v,+ iI - at, 0), the use of the 
Cauchy-Kowalski procedure is equivalent to that of a characteristic method that 
traces the characteristic curve through (x,+,.~, t) to the initial data. 

Next we consider the scalar IVP (1.1) with convexf(u) and smooth initial data 
I&) and we show that the above interpretation of the numerical approximations 
applies to this nonlinear case as well. The numerical solution r,; z z?(x,, t,) typically 
forms a monotone transition of l--2 points across shocks and stays close to U(X,, t,,) 
in the smooth parts of the solution (see the numerical experiments with U, + ZU, = 0 
and ZI(S, 0) = sin rcx in Sect. 7). Let us now examine the discontinuities of R(x; u”) 
at {x~+ ,;2} and the nature of the “fans” emanating from these points. Relation 
(4.16b) with t=O shows that the jump at x ,+ ,,? in the smooth part of the solution 
is of the order of the local error, say 0(/z”) with 0 < p < r. Hence the “fan” emerging 
from ,Y, + ,.‘L in a region of smoothness is either a shock curve or a rarefaction fan 
with O(/zp) spread. On the other hand, in the vicinity of shocks of u(x, t,) the side 
of this jump is 0( 1); however, the “fan” is necessarily a shock curve. We see 
therefore that the global picture is very similar to that of the constant coefficient 
case, i.e., the “fans” separating (u/(x, r)} are either shock curves with zero spread or 
rarefaction fans with O(F) spread (these can be thought of as “blurred” charac- 
teristic curves); these “fans” are the boundaries of the domains of validity of the 
Taylor expansions 5,(x, t). We note that the value given by C,(x,+ li2, t) differs of 
O(rr) from that obtained by solving the nonlinear characteristic relation for o 

u = R(x,+ I,2 - a(u)t; u’l). (4.20) 
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Hence the use of the local Cauchy-Kowalewski procedure is again ~ompntationaI1~ 
equivalent to tracing the characteristic curve through (.Y~+ L,z, :) to the initial data. 
Since the evaluation of f(tl(.u,+ 1:,, t)) in (4.4) essentially involves only E,(.Y,+ I z1 t) 
and 1;,+ l(x,+ 1,2, t), the role of the Riemann solver in the numerical flux (4.14b) is 
again that of a pointer, i.e., to identify to which domain of validity .Y = Y,+ I 1 
belongs. This indicates that the monotonicity of the exact solution operator is 
approximately preserved by our procedure. See Cl in Section 7. This also suggests 
that S” in (4,14b) can be adequately replaced by the simpler expressionSRoE which 
corresponds to Roe’s approximate solution of the Riemann problem (see [25, 141): 

where ii(lc,, a?) is defined by (4.7). Observe that f”“’ m (4.21) satisfies (4.16c) 2nd 
therefore the modified scheme remains r-th order accurate. 

The heuristic analysis presented above is applicable only when all the discon- 
tinuities in the solution to the IVP (1.1) are shocks; discontinuities that are not 
shocks may be present in the solution either by being introduced through the initial 
data uo(s) or as a result of a shock-shock interaction in the non-convex case. 
Clearly f RoE in its form (4.21a) should not be used when the solution contains a 
sonic rarefaction wave since it admits any discontinuity with @u,, Us) = 0 a:; a 
stationary solution. This problem is well known and there are many ways to oker- 
come it (see [13, 26, 91, and Sect. 7). 

In Section 7 we present numerical experiments testing the performance of the 
scheme (4.14) in the solution of the Riemann IVP (4.3~ where f(u) is non-convex 
and ti(u,, zlR) = 0. In all these experiments, as well as in others not reported here, 
we have found the scheme to develop the correct structure of the solution. 

5. SYSTEMS OF CONSERVATIQN LAW 

In this section we extend the reconstruction algorithm of Section 3 and the 
solution-in-the-small procedure of Section 4 to the case of hyperbolic systems of 
conservation laws. 

As always we are interested only in “computable” solutions and therefore assume 
that the initial data Zig in (l.lb) are such that U(X, I), which is a vector function 
of m components u = (~4~ ,..., ~4~) ‘, is, at any given t a piecewise smooth function of x 
with a finite number of discontinuities. Given cell averages ti; = ti(s,, t,,), it seems 
natural from the point of view of approximation theory to reconstruct H(X, r,,! by 
applying the scalar reconstruction R to each of the scalar component Uz- I.e., 

R(x; U”)= (R((x; ii'&.., R(x; ~7;))'; (5.1) 
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here R denotes vector reconstruction. However, componentwise reconstruction 
seems natural only if we disregard the time-dependence of u(x, t) which allows 
discontinuities in the solution to collide with each other. 

We recall that the scalar reconstruction is non-oscillatory only if discontinuities 
are separated by at least r + 1 points of smoothness, where r is the order of 
accuracy. Consequently the component-by-component reconstruction (5.1) may 
cease to be non-oscillatory around the discrete set of points (x,, t,), where discon- 
tinuities of zl(.lc, t) interact. In the following we describe an algorithm to reconstruct 
u(.x, t,) from 11” which avoids this difficulty by decomposing U” which avoids this 
difficulty by decomposing u” into m locally defined scalar characteristic variables. 

We start by examining the constant coefficient case f(u) = Au, where A is a 

irk>> 

constant m x m matrix 

24, + Au, = 0 

24(x, 0) =24()(x). 

We note that the eigenvalues {ok] as well as the eigenvectors 
constant. We assume that 

a, < a, < . . < a, 

lit-, = 6,. 

We define the kth characteristic variable bvli by 

It follows then from (5.3b) that 

lVk = 1 k u. 

(5.2a) 

(5.2b) 

f/k; are also 

(5.3a) 

(5.3b) 

(5.4a) 

(5.4b) 

Multiplying (5.2) from the left by I, we see that npk(x, t) satisfies the following 
scalar IVP 

(wk)r + ak( hi’k)x = 0 (5.5a) 

lVk( 15’. 0) = I, q)(x) = w,“(x), (5.5b) 

the solution to which is 

d(x, t) = IL$(X - ak f). (5.5c) 

Using (5.4b) and (5.5~) we can express the solution u(x, t) of the constant coef- 
ficient IVP (5.2) by 

u(x, t)=c “$(x-aa,t) rk. 
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Let us now consider the following initial data in (5.2b) 

First let us consider the case ?cL = xR = 0 which is the Riemann IVP (4.3). The 
solution u(.u, t) is a self-similar solution V(.u/t; zlr. Us) of the following form 

where 

Ilk = UL + i: (I\$ - 11’;) r,, 1 <h-6171- 1. 

I== I 

(56cj 

In the case xR > xL in (56aj the solution u(.Y, I), for t small, is 

.r - XL 
- ; If 

t 
L* UM 

j 
for x<,rL+a,,t 

for ~~+a,,,td.uds,+a,t (5.6dj 

s - x R 
-; Z4M, uR t ! 

for x,+a,t<.r. 

As t increases, the discontinuity in the kth characteristic field originating at x = xi 
will eventually collide with any discontinuity in the Ith field, i= l,..., k- I 
originating at .Y = xR. 

The example (5.6) demonstrates the difficulty encountered in using the com- 
ponentwise reconstruction (5.1). We may get oscillations for small t in both (5.6bj 
and (5.6d) since the discontinuities are too close due to the self-similar nature of the 
solution to the Riemann problem. Later on we may get more oscillations in ( 5.6d) 
as discontinuities collide. 

We observe that there are no such problems with ;z,~(.Y, t) = rz$(s - a,:). 
Therefore it makes sense to use the scalar reconstrution R(.r; C” j to define 

R(x: U) = f R(x; Ck) rk. 
k=l 

(5.?a j 

where 
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We generalize (5.7) to the nonlinear system case by using locally defined charac- 
teristic variables. To reconstruct u from U in (x, _ liz, x,+ r.‘?) we define 

,A 
R(x; U)= c R(s; E”(U,), r,(U,) 

k=l 

for x,- 1:2G*~<x,,1/2, (5.8a) 

where the mesh function Gk(U/) = { rGf(ti,)) is defined by 

lTf( ii,) = lk(ll,) u, for j-pdidj+y; (5.8b) 

here p is the desired order of reconstruction. 
In Section 7 we present calculations for the Euler equations of gas dynamics with 

the initial data (5.6a). The results of these calculations (as well as those of shocks 
reflecting from a wall) demonstrate that the reconstruction (5.8) works well also in 
the nonlinear case. 

We turn now to describe our scheme in the case of hyperbolic systems of conser- 
vation laws. This scheme is identical in form to (4.14): 

(5.9a) 

The derivation of (5.9), although different in some details, is basically the same as 
the one presented in Section 4 for the scalar case. Rather than repeating ourselves 
we shall use the formulae of Section 4 (which are to be interpreted here in a vector 
sense), and point out the differences whenever they do exist. 

The problem to be solved in the “solution-in-the-small” step of the algorithm 
(1.14b) is as before (4.2). The general structure of the solution u(n, t) is similar to 
that of the scalar case, i.e., it is composed of sections of smoothness separated by 
“fans” emanating from the discontinuities at {x,+ ri2>. As in the scalar case we can 
use a local CauchyPKowalewski procedure to approximate u,(x, t), the section of 
smoothness of t’(x, t) that is connected to the polynomial initial data in 

(.~,--1/2~ -u,+1;2 ? ) by t?,(x, t) in (4.12) to any desired order of accuracy. Since Y(U) is 
now a vector, f’(u) is a matrix, f”(u) is a tensor, and so on; consequently, (4.1 lc) 
has to be replaced by a much more complicated expression. Rather than doing this 
we shall present an algorithm in Section 6 to carry out the CauchyyKowalewski 
procedure in the specific case of the Euler equations for gas dynamics. 

Next we consider the “fan” that emanates from the discontinuity at x,+ 1,2. As in 
the scalar case this “fan” starts at t = 0 as a self-similar solution to the Riemann 
problem (4.3), which in the system case is a packet of 171 fans corresponding to the 
different characteristic fields. A major difference from the scalar case is that (except 
when the initial data in (4.2b) are piecewise constant) the “fan” emerging from 

-y, + I;? at I = 0 immediately loses its self-similar nature. Therefore it is no longer 
possible to express v( x, + ,;2, t) in a simple closed form as we did in (4.4). However 
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c(x,+ , ,2, f) can be expressed to any desired order of accuracy via a local Taylor 
expansion of the various curves in the “fan” and the states in between (We refer the 
interested reader to [l] where Ben-Artzi and Falcowitz describe such an expansion 
for the Euler equations of gas dynamics.) Thus as in the scalar case, although at 
considerably more effort, it is possible to obtain an explicit expression that 
approximates the “abstract numerical flux” (4.8) to any desired order of accuracy. 

We turn now to show that the numerical scheme (5.9) is an adequate 
approximation to the “abstract scheme” (1.16). First we observe that relations 
(4.16) hold also for the system case; therefore (4.15) follows in exactly the same way 
as in the scalar case and consequently the scheme (5.9) is likewise Fth order 
accurate. 

Next we consider the scheme in the constant coefficient case (5.2). Since both the 
PDE (l.la) and the scheme (5.9) decouple into UT scalar relations for the charac- 
teristic variables \vh- in (5.4a), we can apply the analysis of the scalar constant cuef- 
iicient case to systems in a characteristic-wise fashion. It follows then from 
(4.17))(4.18) that the numerical flux (5.9b) is exact anld that the numerical scheme 
(5.9) is idenrical to the “abstract scheme” (1.16). Let us examine now the structure 
of the solution r(x, t ): The “fan” emanating from X, + , I has the same form as < 5.6b ! 
except that Us, I[,‘, and ~1~ are now functions of .Y and t. The section of smoothness 
.Y, ~~ , 2 -t a,, t -=c .Y < I, + t 2 + 11, t is also the domain of validity of the Taylor expan- 
sion (x. t). We note, however. that I,i!,(s. I): which is the Tay!or expansion of 
H$(.Y, t). is valid in the larger domain X, ~ , ,: + a,< t < x < x,+ L 2 + ax 1. Nesr tet us 
examine the role offR in formulating the numerical flux (5.9b): 

where 

(a,) + = max(0, a,), (a,) = min(O. ok). i 5. IOb ! 

We see from (5.10) that as in the scalar case the role ofjR is that of a pointer. i.e., 
to identify for each characteristic variable I# = 1,~ to which domain of vaiidity of 
{lki!,> does X=X,+ 1:7 belong. Since l,Z,(.u,+ 1,2, t) = i,t’(~,+ I,1 - (flit. O), the use of 
Cauchy-Kowalewski procedure in this procedure in this fashion is again com- 
putationally equivalent to that of a characteristic method. 

In the following we argue that except for the discrete set { (.Y, , :L ) 1 of interac- 
tions, the above interpretation can be applied to the nonlinear case as well. Unlike 
the scalar case we do not consider in this paper the “non-convex case” for systems 
and assume that each characteristic field is either genuinely nonlinear or linearly 
degenerate (see [ 193). When we consider the IVP (4.2) in the context of the 
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numerical scheme where tl(~, 0) = R(x; 0”) we see that the “fans” in the solution 
v(x, t) are related to the global structure of u(x, t,,) in the following way (see 
Figs. 14 and 16): When u(x, t,) is smooth, the “fan” has the basic structure of the 
constant coefficient case linearized around u(x ,+ i;*, t,,), except that the k waves 
may have a spread of O(hC). When x I+ ,,,? is in the vicinity of a shock of u(x, t,), the 
“fan” is essentially a shock wave with small perturbations in the other fields. We see 
that typically (excluding interactions) the “fan” eminating from x,+ ijZ in the 
solution u(.x, t) is degenerate in the sense that except possibly for a single large 
shock (or a contact discontinuity) all the waves in it are weak. This heuristic 
analysis suggests that .f(v(x , + ,,Z, I)) can be adequately approximated by a local 
Roe’s linearization; this linearization is exact for a single shock or a contact-discon- 
tinuity and amounts to a characteristic approximation for weak waves. 

As in the scalar case, f RoE is obtained by a local linearization with respect to a 
particular average B = zi(u,, ~1~) for which 

fiz4R)-f(UL)=A(~)(UR-UL). (5.11a) 

f RoE is defined as the flux at .u=O of the solution to the constant coefticient 
Riemann IVP: 

u,+A(ti)u.=O 

Zl(X, O)= 
i 

uL 
x-co 

14R x > 0, 

which can be expressed as 

k=l 

where 

6,(u,, UR) = ik(;)(+ - la,); (5.11c) 

here ak(ti), lli(ti), and rk(ti) are evaluated with respect to the Jacobian matrix A(C). 
The derivation of Roe’s Riemann solver is well documented in the literature (see 
[25, 8, 9, 141). In Section 6 we describe f RoE for the Euler equations of gas 
dynamics. 

Finally let us examine the performance of the scheme (5.9) during an interaction 
of discontinuities in the solution zl(x, t) of the IVP (1.1). We observe that it takes 
some time until the outcoming waves can be properly described on the com- 
putational grid. Till then R(x; v”), which is based on polynomial interpolation, can 
only be a crude approximation to 14(x, t,,). Under these circumstances we expect the 
“fans” in the solution v(n, t) (4.12) that originate from discontinuities in the interac- 
tion zone of u(.x, t,), to be adequately approximated by the self-similar solution to 
the local Riemann problem. We note that once the outcoming waves are properly 
resolved on the computational grid, the previous analysis applies. 
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In Section 7 we present numerical experiments where the scheme (5.9) with f” 
replaced by f RoE ( . 5 11) is applied to an interaction problem for the Euler equations 
of polytropic gas. In all these experiments the scheme (5.9) has developed the 
correct structure of the solution. 

We remark that the scheme (5.9) with f”“” in its form (5.11bj admits a 
stationary “expansion shock” as its steady solution. This can be easily rectified by 
adding entropy viscosity terms for the genuinely nonlinear characteristic fields (see 
111% 14,91). 

6. EULER EQUATIONS OF GAS DYNAMICS 

In this section we describe how to apply the scheme (5.1) to the Euler equations 
of gas dynamics for a polytropic gas: 

21, +f(lljr = 0 (6.12) 

II = (p, 171, EjT (&lb) 

f(u) = p + (0. P, qPjT (6.1~) 

P= (7 - 1)(.&$X$) (6.ld) 

Here p, q, P, and E are the density, velocity, pressure, and total energy, respec- 
tively; nz = pq is the momentum and y is the ratio of specific heats. 

The eigenvalues of the Jacobian matrix A( U) = 8fiSu are 

a,(u) = 9 - c, a,(u) = q, a,(ul=q+c, 

where c = (yP/p)‘!’ is the speed of sound. 
The corresponding right-eigenvector are 

here 

H= (E+ P)/p = c’,‘(y - 1 j + +q2 

is the enthalpy. 
To compute {Ik(u)) which is bi-orthonormal to { rk(u j > in (6.2b), we first form 

the matrix T(u), the columns of which are the right-eigenvectors in (6.2b) 

T(u) = (rl(u), r?(u), r,(u)) 
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and then define ,k(u) to be the kth row in T-‘(u), the inverse of T(u). We get 

I,(u)=;(b2+q/c, -b,q- l/c, b,) 

4(u)=(l-b2,b,q, -6,) 

b(u)=t(b,-q/c, -b,q+ l/c, b,), 

(6.2d) 

where 

b,=(y-1)/c2 (6.2e) 

b2 = ;q2b,. (6.2f) 

Given (c;}, approximation to (ti(~,, t,)}, we use (6.2d)-(6.2f) to evaluate the 
locally defined characteristic variables (5.8b) 

I?;( u;I) = !k( 0;) 0; for i=j-r ,..., j+r and k= 1, 2, 3. (6.3a) 

Next we apply our scalar reconstruction algorithm to each of the locally defined 
characteristic variables in (6.3a) The scalar reconstruction R(x, W) is described in 
an algorithmic form in an Appendix; the output of this algorithm is in the form of 
the finite Taylor series in (4.2b). Thus we get for each characteristic variable in 
t-x, - I.‘27 -VI+ I,‘2 ) 

Rearranging terms we can express the vector reconstruction (5.8a) by 

R(s; ~7”) = c b,.,(x - x,)//I!, 
I=0 

where 

b/.r= c b;,+ (6.3d) 
k-1 

Note that wherever the solution is smooth 

b,,, = 2 ip, m, EIT + O(W’) for 0616~- 1. 
r = x, 

(6.3b) 

(6.3~) 

(6.3e) 

We turn now to describe the Cauchy-Kowalewski procedure (4.4)-(4.5) for the 
Euler equations of gas dynamics. We start by using the reconstruction output (6.3~) 
to define (4.4a), i.e., 

for O<l<r-1 
for I>r. 

(6.4a) 
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We find it convenient to express d’z)(x,, 0)/3x” iT&” in terms of derivatives of the 
4-vector Z= (p, m, I’, q)? For this purpose we use (6.4a) and the relations 

m=pq 

P= (y - l)(E-$qt?lj 

to find the s-derivatives of q and P, by 

and so on. Having evaluated S’Z(s,, O)/Ss’ for 0 < i<r - 1, we proceed to obtain 
the rest of the derivatives d’Z(.u,, O)j?sk 2t’-“, O< 16 r- 1, 0 <k d I by differen- 
tiating the PDEs 

p,+m7=o (63a) 

P,+qP,+)‘Pu,=O (6.Sc j 

and the algebraic relation 

m = qp (6Sd) 

in the following ordered way: Compute Z,(X,, 0) from 

p,+mt=o 

m, + q,m + qm. + P, = 0 

P,+qP,+1’Pq.=O 

P41+P,q=~~,: 

compute Z.J.Y,, 0) from 

i6.0a) 

(6.6b I 
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compute Z,,(x,, 0) from 

(6.6c) 

compute Z,.,(x,, 0) from 

nz..,+qm,,,+mq.,,+P,,.+3q.nz..+3q,,m,.=O 
(6.6d) 

compute Z,,,(x,, 0) from 

compute Z,,,(x,, 0) from 

Pm + ‘flxt, = 0 

p,,, + qpx,, + Y%,, + WC p,, + 2(q, pxt + YP, 4.a) + 4tr px = 0 

P4rtr + qPIII + J(p,q,, + 4rPrr) = f~m; 

and so on. 
We note that one can differentiate the algebraic relation (6.ld) in order to obtain 

c?E(x,, 0)/8x” ai’- k in terms of the already evaluated derivatives of P, q, and m and 
use the derivatives of the conserved quantities p, ITT, E to compute 6,(x, t) in (4.5). 
However, it is more convenient to evaluate the fluxf(u) andfR(U,, u2) in terms of 
p, q, and P; since Ls/(x, t) is smooth and the scheme (5.9) is in conservation form we 
do not really to worry about relation (4.12b). See Remark 6.2. For this reason we 
use the first, third, and fourth components of 2,(x, t) 

r--l I iJ’Z(x,,O) (X-xJk Pk 
-%(X7 ‘) = ,gok;o ,jXk &-k ’ ___ k! (l-k)! 

(6.7) 

to define pj(x, t), p,(x, t), and &i/(x, t), respectively. 
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Once we have computed (6.7) we can compute the numerical flux .t + I 2 in 
(59b). 

An exact f”( u1 , u,), i.e., 

SR(L~,? ZIZ) =.f( I’(& L41, U?jj, (6.8) 

where I/is/t; zlr, u’) is the exact solution of the Riemann problem for the Euler 
equations of gas dynamics, can be computed through an iterative algorithm. This 
algorithm is rather complicated, and we refer the reader to [S, 3, and 281 for its 
details. 

To compute .f R E fRoE . m (5.1 lb) and (5.9bj all we need is to describe the par- 
ticular average li(u,, u2) for the Euler equations of gas dynamics (see [25, 91 j. Tu 
do so we denote the arithmetic mean of b(u) with respect to ur and 142 by 

and define 

(h) = j[b(Zl,) + b(u,)] 1,6.9a) 

here H is the enthalpy (6.2~ ). Having prescribed G+ 6, and ?, we have all the quan- 
titites needed to define the eigenvalues and eigenvectors in (6.2). 

Remark 6.1. The importance of using the particular average (6.9) rather than a 
simpler one is that when (u,, u2) corresponds to a single shock or a single contact 
discontinuity in the solution of the Riemann problem V(s.‘t; 11,. u;), then .fRoE is 
exact. i.e. 

f RoE(ll,. zl~)=fRId’(O; 24,. l41)). i6.!01 

Remark 6.2. No matter how we derive fi,(~, t j the numerical approximacron 
( 1.16a) is in conservation form. However, in order to make r; + ’ approximate the 
cell average (1.14~) (which is desirable for stability purposes). we need the 
reconstruction to be conservative, i.e., (1.14b) should be \,alid. 

7. NUMERICAL EXPERIMENTS 

In this section we present results of several computer experiments with the 
schemes (4.14) and (5.9). These schemes will be referred to as rth order EN0 
schemes (or “rth order” when applicable-see Remark 1.2): EN0 stands for essen- 
tially non-oscillatory. 

The EN0 schemes are highly nonlinear and consequently do not easily lend 
themselves to rigorous analysis. At present we have completed the analysis of the 
non-oscillatory interpolation H, (3.1)-(3.5) and have acquired a fairly good 
understanding of the reconstruction R(x; F); these reconstruction results can be 
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extended to a single application of the “abstract scheme” (1.10) to piecewise smooth 
data. Unfortunately we have not been able as yet to analyze rigorously the crucial 
question of accumulation of error. Under these circumstances, computer 
experiments have become our main tool of analysis. We have performed a large 
number of numerical experiments with initial data ranging from random noise to 
smooth functions. We have studied two notions of “stability”: (i) boundedness of a 
refinement sequence h + 0, r = O(h) for 0 < I < T; (ii) boundedness of the numerical 
solution as n -+ i(j with fixed h and z. In all our experiments’ we have found the 
EN0 schemes to be stable under a CFL restriction of 1 and strongly so, in the 
sense that they strongly damp high frequency noise-this is probably due to the 
cell-averaging step (1.14c). 

In [15], the first paper in this series, we have presented numerical results which 
compare the second-order EN0 scheme based on RD with r = 2 to a “second-order 
accurate” MUSCL-type scheme, which is computationally equivalent to the 
“second-order” EN0 scheme based on RP with r = 2. 

In [ 161, the second paper in this series, we have presented numerical experiments 
that verify our statements about the accuracy and non-oscillatory nature of the 
reconstruction R(.Y; M’), and demonstrate the stability of the EN0 schemes in the 
scalar constant coefficient case for both the pure IVP and the mixed initial-boun- 
dary value problem (IBVP). 

In this paper we present a sample of our numerical experiments for the nonlinear 
scalar case and the Euler equations of gas dynamics in 1D. The purpose of this 
presentation is to address the open questions that we could not fully answer by 
analysis: The accumulation of error, the adequacy of the “solution in the small” 
procedure, consistency with entropy inequalities, and the effectiveness of the charac- 
teristic-wise reconstruction for systems. We have performed most of the numerical 
experiments for r = 1, 2, $4, 5, 6. Since it is not practical to present six sets of data 
for each problem we usually compare r =2, which is the current state of the art 
scheme, to r = 4 which seems to be optimal for smooth solutions. However, presen- 
tation of a comprehensive efficiency study is deferred to a future paper. 

A. SCALAR CONSERVATION LAWS 

Al. Cont1e.u f (u) with smooth initial data 

In this subsection we show results of applying the EN0 schemes to 

u, + (d/2)x = 0 (7.la) 

u(x, 0) = CI + /? sin(7c.x + y), (7.lb) 

‘The only expection where we had to reduce the CFL number IS for the imtial data of the mesh 
oscillation function L;: = ( - 1 )J. This choice of mltial data forces the EN0 scheme to become linear; for 
$ = 0,( - I)‘, where .9, is a positive random number, the scheme IS agam stable under a CFL restrlction 
of 1 (see 116 ] for more details). 
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TABLE IA 

Solution of the Periodic IVP (7.1) at t = 0.3 by EN0 Schemes Based on RP 

L ,.-Error 

8 1.582 x lo-’ 9.037 x 10 -1 3 801 x 10-z 2715 x 10-2 2.117x IO mz 
0 so 1.07 2.24 2.76 2.86 

16 9.081 x lo-’ 4.300 x 10-l 8.038 x 10-x 3.998 x 10 1 2.906x 10.’ 
087 1.21 1.10 3 :8 3 76 

31 3964 x 10-J 1.819x lo-’ 1.876x 10-j 1123x lo-’ 2.151 x 10 -l 
091 1.32 2.35 3 39 i 65 

61 2.648~ IO-‘ 7.796 Y IO-’ 3684. lOm4 3211 XiO-’ I71j x lo-’ 
092 1 33 2 l-1 3.01 4.50 

128 1 101x 10-l 3900x 10-j 8.356 x I()-’ S.188 x IO ‘* 7.561 X iOC 

8 8130x lo-’ 3507 x lo-’ 1.669 x IO-’ 1.003 x 10-z 7.000x IO-’ 
0.98 1 79 2.70 3 21 3.5 1 

16 4.279 x 10-2 1.301x 10-J 2.574 x IO -3 I 086 x lC-” 5.87s x IO-’ 
0.97 181 2.69 3.53 4 OS 

32 2.186 x lo-’ 3707x10-’ 3992x lo-’ 9300x lo-’ 3462x10 A 
0.96 I 89 3 69 3.57 4.4 8 

61 1 124x iO-’ 9980x IO-’ 6.165 x IO-’ 79eix 10~” 1516x iO-” 
0.99 1 83 7 56 3.53 -4 62 

124 5.67s x IO- ’ 2813x10m4 1032x10-’ 6.835 x 10 -’ 6270x lG-’ 

TABLE IB 

Solution of the Perlodrc [VP (7.1) at t = 0.3 by EN0 Schemes Based on RD 

L,-Error 

8 1.582 x 10-l 5.203 x 10-J 4.481x IO-’ 1.787 x 10 m2 2.115x IO-: 
0 80 1.93 301 ? 97 3 I7 

16 9.081 x !O-’ 1.352 x lo-’ 5.577 x lo-’ 3565x10- 2343x LO-’ 
0.87 1.93 2 67 3.2 1 36! 

32 4964x 10-l 3.562 x 10-l 8.791 x lo-’ 3.777 x 1oma I.191 x :o 4 
0.9 1 2.05 3 96 3.69 5 ?(T 

64 2.618 x lo-’ 8.610 x lo-’ 5658 x IO-’ 2.927 x 10 -5 5.242 x lO-b 
092 2.30 3.32 4.76 5 36 

1’8 1.404 x 10-l 1.748 x lo-’ 6 081 x IOmh 1.077 x 10-6 1176 x IO-’ 

8 8.440 x lo-? 2.231 x 10-1 1333 x 10-2 8600x 10-l 6.045 x loo-’ 
098 2.10 3.26 3.71 3 90 

16 3.279 x 10-2 4.228 x lo-’ 1.388 x 10m3 6.575 x 10-j 4063 x IO-‘: 
0.97 2 30 331 1.02 4.x 

31 7.186 x 10-l 8.565 x lo-’ 1.399 x 10 m4 1.056 x IO-’ 1.919 x lo-’ 
0.96 2.23 3.67 4.39 j 30 

64 I 124x 10-l 1.826 x 10m4 1.096 x lo- 1.096 x lo-’ i 936 x IO-” 
0.99 2.18 3.35 1.53 > 33 -; 

128 5.675 x 10~” 4.039 x 10 -j 1.071 x 10-h 8.385 x 10mx 9.810 x 10 -’ 
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TABLE IIA 

Solution of the IBVP (7.1) and (7.5 ) at f = 0.3 by EN0 Schemes Based on RP 

L ,-Error 

8 1.471 x low’ 9.047 x 10-l 2.849 x 10 -2 2.936 x 10 mz 1.766 x 10-’ 
0.68 1.07 0.77 1.56 0.69 

16 9.184 x lo- 2 4.300 x 10-1 1.672 x lo-? 9.943 x 10-j 1.096 x 10 -2 
0.77 1.24 2.75 2.98 3 58 

32 5.382 x 10-2 1.819 Y lo-: 2.477 x 10 mi 1.275 x loo-) 9.149 x lo-’ 
0 75 1.32 2.75 5.14 5.56 

64 3.198 x lo-’ 7.296 x 10 m3 3 684x 10mJ 3.614 x lo--” 1.944 x 10-s 
0.88 1.33 2.14 2.83 4.69 

128 I 742 x 10-l 2.900 x 10-j 8.356 x 10 - 5 5.089 x 10 6 7.540 x 10-7 

L ,-Errol 

8 7.745 x lo-’ 3.355 x lo-’ 1.221 x 10-z 8.065 x 10 -’ 5.365 x 1O-3 
0.95 1 33 1.60 2 40 1.92 

16 4.015 x IO-’ 1.339 x IO-’ 4.032 x 10 -1 1.528 x 10m3 1.389 x 10-j 
0.91 1.88 3.14 3.40 4.15 

32 2 143 x IO-1 3.643 x 10-j 4.563 x lo-* 1.445 x lo-’ 7.810x 10-j 
0.96 1.86 2.89 4.21 5.04 

64 1.102x lo-’ 1.003 x 10-x 6.175 x lo-’ 7.505 x 10 mh 2.371 x 10-h 
0.97 1.81 2.70 3 58 5.07 

128 5.630x IO-’ 2.855 x IO -’ 9.485 x 10 mh 6.285 x lo-’ 7.060 x 10 -R 

TABLE IIB 

Solution of the IBVP (7 1 j and (7.5) at I =0.3 by EN0 Schemes Based on RD 

J /=l I’, r=2 I’, I’ .= 3 r, , =-I r, r=5 r, 

L i- -Error 

8 1.471 x lo-- 3.264 x 10 --2 3 122 x 10-J 1.799 x 10-2 9.192 x 10 c 
0.68 0.78 1.86 0.69 -65 

16 9.184 x lo-’ 1.907x 10-2 8.571 x lom3 l.ll-lx lo-? 1.441 x lo~-z 
0.77 3.46 2.65 3.58 3.54 

32 5.382 x 10-2 3.454 x lo- 3 1.366 x 10m3 9.313 x 1o-1 1.240 x 10-j 
0.75 2.06 4.71 5.01 6.96 

64 3.198 x lo-’ 8.302x 10-j 5.220 x 10 -5 2.897 x lo-’ 9.737 x 10-e 
0.88 3.24 3.12 4 75 6.07 

128 1.742 x lo-’ 1.754 x 10mJ 5.996 x 10-h 1.075 x 10-6 1.473 x IO- ’ 

L ,-Error 

8 7.715 x lo-’ 1.488 x lo-’ 8.425 x 10 -3 5.480 x 10-j 2.240 x 10-j 
0.95 1.52 2.45 2.00 0.88 

16 4.015 x 10mz 5.190 x 10-j 1.540 x lo-’ 1.372 x 10-X 1.217 x 10-j 
0.91 2.57 3.18 4.07 3.83 

32 2.143 x 1O-2 8.730 x 10 -a 1.694 x lo-’ 8.105 x lo-’ 8.570 x lo-’ 
0.96 2.22 4.00 4.90 6.26 

64 1.102 x lOF* 1.879 x lOm1 1.059 x 10 m5 2.747 x 10 -6 1.119x 10-6 
0.97 2.15 3.39 4.90 6.68 

128 5.630 x 10m3 4.219x 1O-5 1.012 x 10 -6 9.200 x 10-e 1.092 x 10 -3 
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for - 1 6 s < 1, t 3 0. In these calculations we have used. the EN0 schemes with .f” 
replaced by f RoE (4.21) (without any entropy correction). 

Let 2(x, t) denote the solution of (7.la) with S(.L 0) = sin ZY, i.e., 9 = 1, 
cy. = 7 = 0 in (7. lb). The solution 3(x, t) is smooth for 0 < I < l/x; when t = ! YET a 
shock develops at x = fl and stays there as a stationary shock for I > 1;‘~. Some 
time after its development, this shock starts interacting with the expansion wave in 
- 1 <x < 1; this brings about a fast decay of the solution The “exact” solution 
presented in the following is computed in 0 6-u < 1 by using NewtonRaphson 
iterations to solve the characteristic relation 

2 = sin 7c(x - Zt); (7.2) 

9 in (- 1, 0) is obtained from S in (0, 1) by Z( --x. t) = -2t.u, t). The general 
solution of (7.1) is computed from Y(.u, t ) in t - I. 1) by 

u(s, t)=a+~~(s-rrt+i’. #Bt,. (7.3) 

In Tables I and II and Fig. 1 we present the computation of (7.1) with a = 1, 
,8 = 4, 7 = 0, i.e., u(.u, t) = 1 + $?(x - t, Qt); thus the shock develops at I = 2;~. The 
results are presented at t = 0.3 when the solution IS still smooth. We divide ( - ! ~ 1 I 
into J equal intervals and define 

x,= -1 + (J- l/2)/2, 12 = 2!‘J. l<.i<J i7.4) 

First we consider the pure IVP for (7.1) i.e., periodic boundary conditions at 
s= +l. In Figs. la and lb we show the results of the EN0 schemes with RD at 
t -0.3; Fig. la shows the second-order EN0 scheme, while Fig. lb shows the 
fourth-order one. Both calculations were performed with J= 10 and CFL = 0.6. The 
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continuous line in these figures is the exact solution; the circles represent the values 
of R(.Y,; r”). In Tables IA and IB we list the L,-error and the L,-error at t = 0.3 of 
a refinement sequence J= 8, 16, 32, 64, 128 for r= 1, 2, 3,4, 5 with CFL=0.6. 
Table IA shows the results of the EN0 schemes with RP while Table IB shows the 
ones with RD. The value of rL in Tables I and II is the “computational order of 
accuracy” which is calculated by assuming the error to be a constant times WC; this 
definition is meaningful only for h sufliciently small. 

In Figs. 2a and 2b we use the same schemes as in Fig. 1, but with J= 16, and 
show the results at t z 2/7t (after 17 time steps) which is the time of the formation of 
the shock. In Figs. 3a and 3b we show the reconstruction R(x; u”) corresponding to 
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the numerical solutions of Fig. 2. The squares in Figs. 3a and 3b mark the values of 
NY,, I 2 _ + 0; Y”). R(x; u”) is a piecewise linear in Fig. 3a and piecewise cubic in 
Fig. 3b. 

Next we consider the IBVP for (7.1); since the characteristic speed for (7.3) with 
cx = 1, p = A, 1’ = 0 is positive, we prescribe 

a( - 1, 1) = g(t); i?.5aj 

x = + 1 is an outflow boundary and no condition is prescribed there. To be able to 
compare with the periodic problem we take g(i) in (7Sa) to be the value of the 
periodic solution at x = - 1, i.e., 

g(t) = 1 + fZ( - 1 - t. it). (7.5bj 

The point of view that we have taken in treating boundary conditions is consistent 
with the presentation of the “abstract scheme” (l.lO), (1.14) as a sequence of global 
operations. Thus in the reconstruction step, as in the pure IVP case, we use the 
given cell averages it, ,, I jn’ 1 < j < J, to get R(x; L?‘) for - 1 < x < 1; in the presence of 
boundaries we restrict the choice of stencil to the available information by imposing 
the condition 

ldi,(j)dJ-r for ldk6r (7.6) 

in the aigorithm (3.4). Note that we do not use the given boundary data g(t) (7 5a) 
in the reconstruction step. The boundary data is incorporated into the scheme on 
the PDE level by considering the solution-in-the-small step to be an IBv 
Obviously the resulting scheme is biased “against the wind” near s = -1; 
nevertheless, numerical experiments in the nonlinear case as weli as in the constant 
coefficient case (see [16] ), indicate that the EN0 schemes are stable. We obser-iie 
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that a similar choice of stencil occurs near discontinuities in the interior of the com- 
putational grid. 

In Tables IIA and IIB we repeat the calculation in Table I for the IBVP (7.1) 
with (7.5). In Figs. 4a and 4b we show the calculations of the EN0 schemes based 
on RP with Y = 2 and r = 4, respectively, for the IBVP (7.1) with CI = 0, b = 1, y = K. 
Here the boundaries x = ) 1 are characteristic, and a stationary shock develops at 
x = 0 at t = l/n. In these calculations we have treated x = - 1 as an inflow boundary 
and specified 

u( - 1, t) = 0; 

x = +l was treated as an outflow boundary. The results show the numerical 
solution with J= 16 and CFL = 0.6 at t = 0.6, at which time the solution has 
already started to decay considerably due to the interaction of the shock with the 
expansion waves. 

A2. Riemann IVP for Noncorwex .f(u) 
In this subsection we show results of applying the EN0 schemes to the Riemann 

IVP 

I(,+f(U)y=O, 24(x, 0) = 
i 

uL 
x < 0 

UR x > 0, 
(7.7a) 

where f(u) is the nonconvex function 

f(u)=$(u2- l)(U2-4). (7.7b) 

We recall that the main difficulty in justifying the approximation (4.13) is when the 
“fan” in (4.4) covers x = -Y,+ iI2 ; the same difficulty is encountered in justifying the 
use offRoE (4.21) instead of the exact flux of the Riemann problem (4.6). Therefore 
we present two cases in which a(~,, uR) = 0; in the first case, x = 0 is covered by a 
centered sonic rarefaction fan while, in the second one, there is a stationary (sonic) 
shock at x=0. 

In each case we present two sets of experiments. In the first set we use the EN0 
schemes with the exact f R which is defined by (4.6a); these results, which we con- 
sider to be rather pleasing, are presented in Figs. 5 and 7. In the second set of 
experiments we use the EN0 schemes with f” replaced by the following 
modification offRoE in (4.21) 

S R(‘E(Ul, %)=Xf(U1)+f(k- max(14ul, ~J,)I, &)(u2 - ul)l. (7.8a) 

The addition of the linear viscosity term --E(u~ - u,)/2 for 121 < E, is the simplest 
but crudest entropy correction of (4.21). We note that E = 0 in (7.8a) corresponds to 
(4.21), while F = l/n (A = z//z) corresponds to Lax’s first order scheme [ 181; since 
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b 2.00 

(7.8a) satisfies relation (4.16~) the modified scheme remains rth order accurate In 
our calculations we take 

E = 0.1/I”. i 7.5b ) 

Analysis presented in [24] shows that using (7&-(7.8b] in the “second-order” 
TVD scheme of [9] results in a scheme which converges to entropy correct 
solutions for convex f(u), provided that /1 is sufficiently small; numerical 
experiments in the convex case [9] and the non-convex case [32] seem to verify 
this statement even for a CFL number close to 1. 

The numerical results of the EN0 schemes using (7.8a)-(7.Xb) are shown in 
Figs. 6 and 8. These results show that the EN0 schemes converge to entropy 



272 

a 2.00 

1.20 

0.400 

U 

-0.400 

-1.20 

HARTEN ET AL. 

b 2.00 

1.20 

0.400 

U 

-0.400 

-1.20 

-2.00 
0 

-nee, 
30 1.00 -1.00 -0.600 -0.200 0.200 0. 

-1.20 

-2.00 
-1. .OO 

e 2.00 

1.20 

) -0.600 

d 2.00 

1.20 

0.400 

U 

-0.400 

-1.20 

-2.00 
-1 

f 2.00 .5x 

1.20 

0.400 

U 

-0.400 

-1.20 

-2.00 
-7. 00 

1 -0.600 -0.200 0.200 0.600 1 .oo 
1 -0.600 -0.200 0.200 0.600 1.00 

0 

-0.600 -o.ioo 0.2bo 0. 

FIGURE 6 



a PO.0 

2.50 

0.000E+Oe 

-2.50 
-3 

1 
i 

IL 
LOO 

1 

L 
,.oc 

c 3.00 

1 80 

0.600 

L) 

-0.600 

-1.80 

-3.oc 
-i 

3 

i -0.600 -0.200 0.200 0.600 1 .oo 

-1.80 -0.600 O.&O 1.80 3.0b 

HIGH ORDER ACCURATE SCHEMES, III 

b 3.01) 

1.80 

0.600 

U 

-0.600 

-1.80 

-1.00 -0.600 -0.200 0.200 0.600 1 or! 

d 3.00 

1 80 

0 600 

U 

-0.600 

-1.80 

I_ -7 -1.00 -0.600 -0.200 0.200 0.600 100 
-3.00 

FIGURE I 

correct solutions; however, the quality of the numerical approximation depends 
strongly on the formal order of accuracy of the scheme. 

We remark that an entropy correction to fRoE which is more appropriate for 
the nonconvex case is obtained by using in (7.8a), 8 = .zjrll, II,) which is defined by 

where 

(7.k) 

see 1131. In this case the modifiedfKoE becomes computationally equivalent to i?;e 
exact SK. 
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Our purpose in presenting numerical experiments with the crude entropy correc- 
tion (7.8b) rather than the more appropriate one (7.8c)-(7.8d) is to demonstrate 
that the importance of the Riemann solver in the formulation of the EN0 schemes 
is decreasing with increasing order of accuracy. When r = 1 R(x; 0”) is piecewise 
constant and all the variation of the solution is contained in the discontinuities of 
the reconstruction. Consequently the Riemann solver is the only mechanism to 
describe time evolution. For Y> 1, the smooth polynomial variation in the cell 
(which is O(h) in regions of smoothness) is generally larger than the variation in 
the discontinuities of the reconstruction (which is O(K) in regions of 
smoothness)-Figs. 3, 14, and 16. Therefore the time evolution of the smooth 
polynomial part, namely the Cauchy-Kowalewski procedure is, in general, more 
important than the Riemann solver. The only exception is in the first few time-steps 
needed to introduce intermediate states in the solution to the Riemann IVP (7.7) 
where (u,, zdR) is not a shock. 

In all the calculations presented in this subsection we have used the EN0 
schemes with RD and CFL = 0.8. 

Case (i). ur, = 2, uR = -2. The exact solution in this case is (see Fig. 5a) 

x/t < -0.528 1529 
[xl/t < 0.5281529 (7.9a) 
x/t > 0.528 1529; 

here g(s/t) is a centered rarefaction wave: g(y) is the solution of 

Y =.f’(s) 

in the concave part off which is JuI < 4%; 

g( kO.5281529) = rO.2152504. 

In Figs. 5b, c, d we show the results of the EN0 schemes using the exact f” as 
defined by (4.6a) for r = 1, 2,4, respectively; in these calculations we used J= 40 in 
(7.4) and N= 80 time steps. The exact solution is shown by the continuous line; the 
circles mark the values of R(x,; u”). We observe that the structure of the solution in 
these calculations has developed at the correct rate; this is evident from the fact that 
the location of the computed shocks is accurate. In Fig. 5b we notice the “dog-leg” 
which is typical of Godunov’s scheme. 

In Figs. 6a, b, c we repeat the calculations in Figs. 5b, c, d but with f R replaced 
by f”“” (7.8a)-(7.8b). From these figures we see that the scheme develops the 
correct structure of the solution, but not at the correct rate. This is due to the fact 
that E = 0.1/A represents a fan which is much narrower than the initial fan in the 
exact solution. The location of the computed shocks lags behind the correct 
location by 8 cells for Y = 1, 3 cells for r = 2, and only one cell for r = 4. To verify 
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that the numerical approximations converge to the entropy correct solutio!: we 
refine the mesh by a factor of 2 and repeat the calculations of Figs. 6a, b, c with 
.I= 80, N= 160; the results of these calculations are shown in Figs. 6d, e, f. Since 
the number of cells by which the computed shocks lags behind the correct location 
remains the same, we conclude that the numerical approximations indeed do COG 
verge to the entropy solution. 

Taking into account the crudeness of the entropy correction j7.8b) we consider 
the performance of the 4th-order scheme in Fig. 6c and 6f to be surprisingly good. 

Case (ii). uL = -3, uR = 3. 
The exact solution in this case is (see Fig. 7a) 1 -3 x-it 6 -19.5 

zl(,Y, t) s(-ult) - 19.5 <sit < 0 = 

--g( -x/t) 0 <x:‘: < 19.5 
3 19.5 <x/r; 

(1.4b j 

here E(J) is the solution of 

in the convex part off wh@ is Iu/> \I”%. Note that the solution (7.9b ) is discon- 
tinuous at x = 0; g(0) = J2.5. 

In Figs. 7b, c, d we show the results of the EN0 schemes using the exact fR as 
defined by (4.6a) for r = 1, 2,4, respectively; in these calculations we used J= 40 in 
(7.4) and N= 20 time steps. We observe that the stationary shock at .Y = 0 in the92 
figures in perfectly resolved. 

In Figs. 8a, b, c we repeat the calculations in Figs. 7b, c, d but with /‘R repiaced 
by f”“’ (7.8a)-(7.8b). Since the rarefaction fans in this case are not sonic, the 
quality of the numerical approximation of the rarefaction wave in Figs. 8a, b, c is 
similar to that of the corresponding one in Figs. 7b, c, d. We observe that the 
stationary shock at x = 0 in Figs. 8a, b, c is somewhat smeared-this is due to the 
fact that the Riemann solver corresponding to (7.8b) places a fan of the sire 
Ix/t1 < E around s = 0. Nevertheless, if we compare the results of the 4th-order EN0 
schemes in the two experiments, we find that the results in Fig. 8c are only slightly 
inferior to those of Fig. 7d. 

B. Euler Equations of Gas Dynan~ics 

In this subsection we present numerical experiments with the EN0 schemes for 
the Euler equations of gas dynamics for a polytropic gas with 1’ = 1.4 (see Seer. 61. 
In all these calculations we have used reconstruction via primitive function (RP) 
andf RoE 5 11) (6.9) without any entropy corrections. ( . , 



276 HARTEN ET AL. 

a 3.00 b 3.00 

1.80 1.80 

0.600 0.600 

U U 

-0.600 -0.600 

-1.80 -1.80 

-3.00 
-1 

1 L_ I -0.600 -0.200 0.200 0.600 1.00 

-3.00 , -7 
-1.00 -0.600 -0.200 0.200 0.600 1 .oo 

FIGURE 8 

B 1. Riemann Problem 

In Figs. 9 and 10 we show the results of applying the EN0 schemes with r = 2 
and r = 4, respectively, to the Riemann problem (7.7a) with the initial data 

(PL,qL,pL)=(l,o, 1); (PR, qR, PR) = (0.12% 0, o.l”). (7.10a) 

In these calculations we have used the characteristic reconstruction (5.8), (6.3) with 
100 cells, h = 0.1, CFL = 0.8, and 50 time steps. 

In Fig. 11 we repeat the calculation of the “fourth-order” EN0 scheme in Fig. 10 
but with component-wise reconstruction (5.1). Comparing Fig. 10 with Fig. 11 we 
see that there is some “noise” in the component-wise reconstruction which is 
eliminated by using characteristic reconstruction. We note however that the level of 
“noise” in Fig. 11 may be considered acceptable for practical calculations. 



HIGH ORDER ACCURATE SCHEMES, III 

0.200 0.187 I 

0.000E+00 L- 1 O.OOOE+OO 
-4.90 -2.90 -0.900 1.10 3.10 5.10 -4.90 -2.90 -0.900 7.10 3.10 5.40 

E 0.600 

2 

z 
E 0.400 

0.200 

O.OOOE+OO i 
-4.90 -2.90 -0.900 1.10 3.10 5.10 

FIGURE 9 

The initial data (7.10a) are those of the Riemann problem proposed by Sod in 
[23], which has become a standard test problem. The solution of this problem has 
a monotone decreasing density profile and therefore it does not display certain dif- 
ficulties that may arise when the intermediate state has to be “built-up.” In 
Figs. 12-16 we present calculations for the Riemann problem 

(pL, qr, P,)=(O.445,0.698, 3.528); (pR, qR, PR)= (0.5,0,0.571) (7.lOb) 

used by Lax in [18]; see also [7, 91. All these calculations were performed with LOO 
cells, Iz = 0.1, CFL = 0.8, and 85 time steps using a component-wise reconstruction 
(5.11). In Fig. 12 we show the results of the “4th-order” EN0 scheme using a com- 
ponent-wise reconstruction (5.11). Comparing these results to Fig. 11 we see that 
the component-wise reconstruction here is much “noisier” than in Sod’s problem. In 
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Figs. 13 and 15 we show the results of the EN0 schemes using characteristic 
reconstruction (6.3) for Y = 2 and r = 4, respectively; comparing Fig. 15 to Fig. 12 
we see that most of the “noise” in Fig. 12 is eliminated. 

In Figs. 14 and 16 we show the characteristic reconstruction R(x; z’~) of the 
numerical solution in Figs. 13 and 15, respectively; R(x; Y”) is piecewise-linear in 
Fig. 14 (r = 2) and piecewise-cubic in Fig. 16 (r = 4). The squares in these figures 
mark the values of R(x,+ 1,2 _ + 0; 21”); thus the difference between the two squares at 
the same location shows the size of the discontinuity in the reconstruction there (we 
recall that the circles in Figs. 13 and 15 are the values of R(x,; u”)). We see that the 
discontinuities in the reconstruction of the rarefaction wave are small enough to be 
graphically imperceptible. Surprisingly the discontinuities in the reconstruction of 
the contact-discontinuity are also rather small. Comparing Fig. 16 to Fig. 14 we 



1.00 

0.800 

: 0.600 

5 

2 0.400 

0.200 

O.OOGEMO 
-4 

T- 

1 
I 
! 
1 L ..8! 

HIGH ORDER ACCURATE SCHEMES, 111 

1.00 , 

I r- 

0.800 

> 0.600 
t 

:: 
A 
5 0.400 

5 -2.87 -0.890 1.09 3.07 5.05 -4.85 

b 

279 

1: 
1.09 3.07 &I; 

0.800 i 

'1 
D 

0.200 
i 

; 

o.oOoE+oOL~ ,-z 
-4.85 -2.87 -0.890 1.09 3.07 5.05 

FIGURE 11 

notice that the size of the discontinuities in the reconstruction for r = 4 is atways 
considerably smaller than that for r = 2. It is interesting to note that even in the 
shock region in Fig. 16 (Y = 4), the sum of the jumps in the reconstruction is only 
about 35% of the size of the shock, while about 65% of the shock jump is described 
by the smooth polynomial part of the reconstruction. 

We remark that because of the self-similar nature of the solution to the Riemann 
problem, the rate of convergence of any scheme is inherently limited to first order 
(see [27]). Comparing r=4 with I’= 2 in the solution of the above Riemann 
problems we notice a slight improvement in the smearing of Ihe contact-discoIl- 
tinuity (we have not used artificial compression in these calculationsj and the 
description of the rarefaction wave. Because of the self-similar nature of the solution 
it is better to compare the performances of two schemes by using .x/r as the spatial 



1.50 1 

120 

280 HARTEN ET AL. 

2.00 

1.60 

z 
0.900 

iij 

2 0.600 

E 
1.20 

ii 

s 

!!i 0.800 

0.300 0.400 

5 -2.87 -0.890 1.09 3.07 
- 

5.05 

320 

0.800 
I 

O.OOOE+OO Am 
-4.85 -2.87 -0.890 1.09 3.07 5.05 

FIGIJRE 12 

variable and to find how many time steps it takes to get well-resolved intermediate 
states. Doing so for the problem (7.10b) we find that I’ = 4 with N= 35 gives about 
the same result as Y = 2 with N= 70. 

B2. Interaction of Bias Waves 

In this subsection we present numerical experiments with the EN0 schemes for 
the problem of two interacting blast waves: 

i 

‘11 0 <x<O.l 

u(x, 0) = UM 0.1 < x < 0.9 (7.11a) 
UR 0.9 <x < 1, 
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where 

PL=PM=PR= 1, qr.=qhl=qR=O, P,= 103, P,= lo--‘, P,= IO’; (7.1lb) 

the boundaries at x = 0 and x = 1 are solid walls. This problem was suggested by 
Woodward and Colella as a test problem; we refer the reader to [3 1 ] where a com- 
prehensive comparison of the performance of various schemes for this problem is 
presented. 

In our calculations we divided the interval (0, 1) into J cells by 

.x,= (j-g/J, j = I,...: .I, /7”.12a) 



783 -L 

1.30 

1 
1.04 

> 0.782 
b 

2 

0” 
0.522 

HARTEN ET AL. 

0.26 1 

% 
1.23 

ii 1 

> 0.923 

% 

t 

L g 0.615 

0.308 

%, 

3 -2.90 -0.900 1.10 3.10 5.10 

2.82 

0.706 

1 

O.OOOE+OO I 1 
-4.90 -2.90 -0.900 1.10 3.10 5.10 

FIGURE 14 

where x, marks the center of the jth cell. The boundary conditions of a solid wall in 
x = 0 and x = 1 were treated by reflection, i.e., we defined auxiliary states 
L’ 11 O>“‘, V’lr+ 1 for the left wall and a;+ 1 ,..., ~l;+~ for the right wall by 

P’:,+l=P;l, CT”,+, = -q;‘, P”,,, = p;, j=l ,...> r (7.12b) 

PI;+, = Pk,+ 13 sl; fJ = -q1;-,+,, pI;,,=pI;-,,I, j=l ,..., r. (7.12~) 

We observe that representing the solid wall condition by the above reflection is 
very suitable for the characteristic reconstruction: A 3-wave approaching the right 
boundary is reflected as a l-wave; consequently there is hardly any interaction 
between the waves in the characteristic variables (6.3a) and a situation of not 
having enough points of smoothness to choose from is thus avoided. 
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In Figs. 17aah we show the solution of the “4th-order” EN0 scheme at 
t=O.OlO, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034, 0.038, respectively. We refer the 
reader to Fig. 2 in [3 11, where a highly accurate solution is displayed and a 
detailed description of the various interactions that occur at these instances is 
presented. The continuous line in Figs. 17a-h, 18, and 19 is the solution of the “4tlt- 
order” EN0 scheme J= 800 in (7.12a). Comparing this solution to the “exact” 
solution of Woodward and Colella in [31], we find that it shows ail the important 
features of the various interactions and thus can be considered a “converged” 
solution. (The continuous line representing the solution with J= 800 is the 
piecewise-linear interpolation of (R(x,; ~7)‘) >; consequently cusps in the solution, 
which do appear in R(x; u”), are chopped in the graphic representation). The circles 
in Figs. 17a-h show the values of R(,u,; u”) of the “4th-order” EN0 scheme with 
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J= 400. Comparing the numerical solution for J= 400 to that of J= 800 we see 
that the velocity and pressure have already converged, while the density in Figs. 17g 
and 17h still deviates from the “converged” solution. This is due to the smearing of 
3 contact discontinuities which are present in the solution at this time; the 
numerical results of Woodward and Colella demonstrate that the addition of 
“contact-discontinuity steepeners” improve the density profile considerably. 

In Fig. 18 we show the solution of the “4th-order” EN0 scheme with J= 200 at 
the final time t = 0.038; In Fig. 19 we repeat the calculation in Fig. 18 for the 
“2nd-order” EN0 scheme. Comparing Figs. 18 and 19 we see that the “4th-order” 
scheme gives a much better resolution. We remark that the results of the 
“4th-order” scheme with J= 100 (not shown here) are of the same quality as those 
of the “2-order” scheme with J= 200. 
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We note that a parabola interpolating 

Pk,) = 240, P(xo) = 0.01, Pjx,) = 40 

has an interval in which it is negative; the same is true for higher order inter- 
polating polynomials that pass through these points. A situation of this type occurs 
in the calculation of the two interacting blast waves just before the interaction in 
Fig. l?d, when the low pressure region in Fig. I7c is shrinking to 1-2 com- 
putational cells. Since high order interpolating polynomials may produce negative 
values of pressure and density in such drastic situations, we have imposed a 
“positivity condition” on the reconstruction step of our programs for the Euler 
equations. To ensure that R(x; u”) in thejth cell yields density and pressure that are 
positive, i.e., 

p,+YE k=I a.xk y=.y, 
(.~--+k,O 

k! ’ 
r- Ia% p,+ c k (x-x,)k>o 
k,,a.K ?=,, k! for IX- .K,I < hi2 

we check whether 

(1.13a) 

(7.13b) 

If condition (7.13b) is not satisfied we reduce the order of the reconstruction locail:! 
at x = X, until positivity is ensured. We observe that the LWS of the inequalities m 
(7.13b) is O(h) in smooth regions, hence this positivity condition does not reduce 
the asymptotic order of accuracy. Our computer program monitors does not reduce 
the asymptotic order of accuracy. Our computer program monitors occurrences of 
order reduction due to the positivity condition; we have found that the order in the 
calculations of the “4th-order” EN0 scheme has been reduced during two time 
steps before the interaction in Fig. 16d, and only at the interaction zone itself; we 
have not encountered any order reduction in the solution to the Riemann problems 
(7.10). 

C. Variants and Extensions 

Cl. Characteristic Method for the Scalar Case 

In [15] we described an approximation to v(x, t), the solution-in-the-small of 
(4.2), which is obtained by tracing approximate characteristics to the initial data. 
This approximation 6(x, t) can be extended to an arbitrary order of accuracy as 
follows: Let Z;+ 1/z denote 

-?I a , t1:2 = a( R(x, + ,,2 - 0; o”), R(x,, Ii2 + 0; v”)), (7.I4a) 
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where ti(ztl, u2) is defined in (4.7), and let G(x) denote the interpolation of ii,“+ l,z by 
H,,, (3.1) with m = r - 1, i.e., 

Gj + 1/Q) = q+ l/2 (7.14b) 

ii(x) = H,,(x; Z), m=r-1. (7.14c) 

The approximation 6(x, t) is obtained by prescribing constancy of the solution 
along the approximate characteristic lines 

i.e., 
x=x,+c?(x,)t, (7.15a) 

qx, + cqx,) t, t) = qx,, 0) = R(x,; v”); (7.15b) 
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thus 

qu, t) = R(x,(x, t); Vn), (7.15C) 

where x,(x, r) is the solution of the algebraic equation (7.15a). Let x:(x, t) denote 
the solution to (7.15a) for nz = 1 in (7.14~); if s and t are such that 



288 HARTEN ET AL. 

C 6.50 

/ 

5.20 
1 

z 
3.90 

z 

x 2.80 

1.30 

I 

E 
6.20 

ii 

G 1 .a0 

-2.60 

O.OOOE+OO~ 5 -7.00 
0.000E+000.200 0.400 0.600 0.600 1 .oo o.ooc 

c 

v 
ho0 0.200 0.400 0.600 0.600 1 .oo 

4g.6 L----IL O.lOOE-01 
O.OOOE+OO 0.200 0.400 0.600 0.600 1.00 

FIG. 17-Contmued. 

then 

(7.16~) 

For m > 1 we obtain x0(x, t) by solving (7.15a) with Newton--Raphson iterations 
starting with the initial guess (7.16~). 

Using 6(x, t) (7.15~) we define the following variant of (4.14): 

V:+‘=v~--(S,+,,z-S/-1,‘2) 

J’/+ I,2 = i ~kfw,+ I,29 PkT)). 
k=O 

(7.17a) 

(7.17b) 
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We have started the development of the ENOschemes with the version (7.17j; 
later on we have replaced the characteristic method by the Cauchy-Kowalewski 
procedure which offers a unified approach in extending the scheme to include forc- 
ing terms and to systems of conservation laws. Our numerical experiments show 
that the two versions are computationally equivalent, although the version with the 
characteristic method (7.17) seems to be slightly more accurate than (4.14). 

We remark that the scheme (7.17), as the scheme (4.14) with fRoE in (4.21a), 
also admits any discontinuity with a(~,, uR) = 0 as a stationary solution. This 
can be easily rectified by replacing the “shock curve” TL+ rJ1’) in (7.16b) by an 
appropriate fan. 
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C2. Semi-discrete Formulation and Runge-Kutta Methods 

The semi-discrete version of the EN0 schemes can be derived either directly from 
(1.4) or by letting z + 0 in (4.14), (5.9). It takes the form 

$ u,(t) = -; cf,, 1,dt) -s,+ 1,2(t)l = 42. t7,,(t). (7.18a) 

where 

s/+ &) =fR(Wj+ l;z - 0; u(f)), W,, l/2 +O; u(t))); (7.18b) 

here u,(t) is an approximation to U(x,, t); u(f) = {u,(t) ) ;fR(u,, u2) is either the exact 
flux (4.5) orfRoE (4.21), (5.11). 
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Considering (7.18) to be a system of ordinary differential equations in t for the 
vector u(I)= {~,(t)j, we can solve the problem by using a numerical ODE solver. In 
[2] we present two sets of numerical experiments in which we use RungeeKutta 
methods of appropriate order to approximate the solution of (7.18). In the first set 
of experiments we apply the scheme to the Riemann problem (7.1Oa) for 
r = 1.2. $4, $6. In the second set of experiments we apply the scheme with r = 2, 4 
to a Lava1 nozzle problem which involves the addition of a forcing term to the 
Euler equations (6.1). In these calculations we have used RP, fRoE and CFL = 0.5. 
Comparing the results of the Riemann problem to those in the present paper we 
find them to be of similar quality. The numerical experiments of [2] indicate that 
the semi-discrete formulation (7.18) with Runge-Kutta temporal discretization does 
not generate spurious oscillations for CFL < 0.5; however when we increase the 



292 HARTEN ET AL. 

9 10.0 14.0 

6.00 10.6 

z 
6.00 

i5 
5 
L3 4.00 

t 

z 
7.20 

3 

ii 
5 3.60 

2.00 - ! 0.400 

O.OOOE+OO / L --v--m -300 
O.OOOE+OO 0200 0.400 0.600 0.600 1.00 o.boc 

465. 
1 

100 0.200 0.400 0.600 0.600 1 .oo 

l36LA 
O.OlJOE+OO 0.200 0.400 0.600 0.300 1 .oo 

FIG. 17-Con/hued. 

CFL number beyond 0.5 we start getting some oscillations and eventually the 
scheme becomes unstable. 

The main advantage of using the Runge-Kutta temporal discretization is the ease 
of its programming; however it seems to be less efficient than the fully discrete for- 
mulation and also requires more storage. 

C3. Variable Grid and Front Tracking 

In Section 3 we have pointed out that the non-oscillatory interpolation H, 
(3.1)-(3.5) and the reconstruction via primitive function (RP) (3.6)-(3.10) are well 
defined for non-uniform grids, see Appendix. Since the solution-in-the-small step 
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also does not require uniformity of the grid, we may compute new cell-averages 
D;+ l in ( 1.14~) on any choice of intervals {I;+ ’ ) by 

here 1; = Cs’: _, ,?, s”, + ,,2) and IILl = 5: + liz - $ _ 1:2. Using the same rationale as 
before, our approximation to (7.19) becomes 
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The numerical flux f,“t ,,,2 is consistent with f(u) - a, + 1,,2 u 

(7.20b) 

and can be expressed as 

f,“+ 1,’ = i: ~k”fRwxj+ l/2 + BkT$/ 112, PkT), c,+ ,(x,+ l/2 + B,kTC,+ ,,‘2, PkZ); o,+ l/2) 
k=O 

(7.20~) 

where 

(7.20d) 
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we recall that V(o; uL, uR) denotes the value of the solution to the Riemann 
problem (4.3) at x/t = CT. Roe’s linearization (5.11) yields the following 
approximation 

- f 6,(u,, u2)~a,(ti)-o~r,(ti) . 
7 k=l 

(7.21) 

In Fig. 20 we show the results of the scheme (7.20) with fR approximated by 
‘RoE J (7.21) for the Riemann problem (7.10b); the values of {</++l in this 
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calculation were chosen by the self-adjusting grid algorithm of [ 131. This algorithm 
provides and automatic way to place interval end points (J’+ l at the location of 
significant discontinuities and thus avoid their smearing by the cell-averaging step 
(7.19). The calculation in Fig. 20 was initialized by taking the exact solution of the 
Riemann problem at t = 0.5 (at which time there are 4 grid points between the con- 
tact-discontinuity and the shock). The results displayed in Fig. 20 show the 
numerical solution of the scheme with r =4 after 100 time steps with CFL =0.5. 
These results clearly demonstrate the adaptability of the EN0 schemes to front 
tracking techniques. 

We note that the use of irregular grids disallows the extra order of accuracy 
which was gained in (1.18) for a uniform grid. Numerical experiments with irregular 
grids (where <, “n+l is randomly selected within a specified interval) show that the 
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error in solving the scalar smooth problem (7.1) by the scheme (7.20) is O(h’~ ’ ) in 
the L,. L,, and L, norms. However, comparing Fig. 20 with Fig. 15 we observe a 
considerable gain in resolution in spite of the reduction in formal order of accuracy. 

C4. Extension to 20 

In this subsection we outline the extension of the EN0 schemes to the solution of 
the 2-dimensional IVP 

u, +.f(LfL + g(u), = 0, u(x, y, 0) = &J(x. >‘j~ (122) 

We note that Strang-type dimensional splitting [29] is only second-order accurate 
in time, and therefore is unsuitable for extending the higher order accurate mem- 
bers of the EN0 schemes to 2D. 

Let 17 denote the two-dimensional “sliding average” of \i’ 

Integrating (7.22) over the computational cell I,, x (r,, t,, + ,]. I!; = [A+ i 2T s,+ i J x 
[J;~~,,, J;+~J, we find that zi;=i(x,,y,,t,,j satisfies 

where i., = r/Ax, 1,. = s/dy, and 

The abstract form of the EN0 schemes for the solution of (7.22) remains ( 1. IO), 
i.e., 

u “+ I = A,. E(t) R(., .; LT”), L’Cf = to, (7.25) 

As before E(r) is the exact evolution operator of (7.22); however, A, is now the 
2-dimensional cell-averaging (7.23) and R(x, J; \?) is an appropriate d-dimensional 
reconstruction of n(x, y). In the scalar constant coefficient case 

Ll,+nu,+bu, =o, 24x, J’, 0) = 24,(x, .I,), (7.2623) 



298 HARTEN ET AL. 

the EN0 scheme (7.25) becomes 

v;+ ’ = i?(x, - UT, y, - bz; d’), v; = XO(Xi, y,). (7.26b) 

In [12] we present numerical experiments with the EN0 scheme (7.26) for the 
scalar constant coefficient case, where the reconstruction R(x,p; ti) is obtained via a 
two-dimensional deconvolution. Expanding iv(x + 5, y + q) in (7.23) around 
t = II= 0 we get as in (3.12) 

+ wx)2@Y)2Yyx,, + (dy)4’M!,,,,] + O(P). (7.27) 

Multiplying both sides of (7.27) by (LLY)~(AJ~)‘~ k a’/dxk 2~‘~~ and truncating the 
expansion in the RHS at O(d’), we get as in (3.13) an invertable system of linear 
equations which expresses 1; and its deviatives in terms of M’ and its derivatives. We 
set 

(DO,O) ij= It’(X,, J;) (7.28a) 

and obtain approximation 

(Sk,‘,, = (Llx)k(Lly)’ a;k;;, 7 Il’(X,, L;) + O(K), 1 dk+l<r- 1; (7.28b) 
I _ 

then, as in (3.17), we invert the system of linear equations to get the following 
approximations to 1~ and its derivatives 

P”%/ = (dx-)*(Ay)‘&/ lV(X,, 1;) + O(I), Odk+l<r- 1. (7.29a) 

Using (7.29a) we define R in the cell I, by 

The approximations Dk’ in (7.28b) are obtained by a sequence of applications of 
the one-dimensional operation (3.15b), which we rewrite now in the following 
operator form: 

(GL l U)I=M (7.30) 
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here u denotes the one-dimensional vector (u[z,)>,“=~. Using (7.30) and the 
notation convention S .., = (M((?c[, y]))f= I, we define 

(@“,, = (dx)“(G; l \T.,,),, 16kdr-2, (7,.3la: 

(6?“.‘,,= (Ay)‘(Gj,, l <,J,, I<l,<T-i. (?.71b) 

To obtain approximations to the mixed derivatives of 1; we first evaluate 

(ijl;,‘j,=(d?l)‘[G~,~, l po),.& i d 1~ r -~ 1 -- k. 

(&‘,,, = Wc)“[G:, ~, *(6’.‘) ..,]p l<kdr-!-I, 

and then define 

P%,= M(Qy),,, (B:‘),,), 

where A4 is the min mod function (3.16). 

(7.3lC) 

We observe that the restriction of the two-dimensional reconstruction (7.29) to 
y = y,, i.e., R(x, +r,;li) is identical to the one-dimensional reconstruction (3.18 j 
applied to the restriction of 1; to y = y,- i.e.. R(.u; \y,( * js,)): the same observatioc 
applies to the restrictions to x=x,. 

We recall that the one-dimensional reconstruction is essentially non-oscillator) 
only if discontinuities are separated by at least r + i points of smoothness. In the 
one-dimensional system case we had to overcome the problem of collision (in rime) 
of discontinuities; in the two-dimensional case we also have to worry about inter- 
sections (in space) of curves of discontinuity. Jn order to study the severity of the 
problem we have experimented with the constant coefficient problem (7.26a) with 
the initial data 

Here U = [ - 1, 1 ] x [ - 1, l] and S is a rotated square contained in U. In [ 121 we 
present numerical results which are obtained by applying the scheme (7.26) with 
I’= I, 2, 3,4 to the initial data (7.32) with periodic boundary conditions or, SC:. 
These results show that indeed small spurious oscillations are generated for r 3 2 
at the corners of S; however, it seems to us that they are small enough 10 be 
computationally acceptable. 

APPENDIX: AN ALGORITHM FOR RECONSTRUCTION 

In this appendix we describe our algorithm for computing the coefficients b~l~k in 
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where x, is the center of the jth cell. To obtain these coefftcients we start with 
Newton’s form of interpolation 

H,(x; u)= i u[y;,..., JJz+k] “fi’ (x-y,+l). (A.2) 
k=O I=0 

Here i = i(j) is selected by the algorithm (3.4) with respect to the divided differences 

dl.k = U[ J’,Y, J’, + kl. tA.3) 

In the following we describe an algorithm to rewrite the polynomial on the RHS 
of (A.2) as a finite Taylor series around x = x, : 

q(x) = i d&Pj,k(.x) = i q’k’(-x,)(X - &)k/k!, (A.41 
k-0 k=O 

where 

(A.51 

Using the fact that the coefficients {q,k) satisfy a recursion relation we compute 
them as follows: We set 

then we evaluate 

Zl = xc - 4'1f I, OdI<r-1; 

%,k = I, Odkbr; 
(f4.6) 

(A.71 

It is easy to see that 

qck)(.q ) = k! i y;- k,J d,,,. 
I=k 

(A.8) 

We note that the algorithm (A.6)-(A.8) is defined for a non-uniform grid. When 
the grid is uniform we can obtain (A.8) in two steps: First we take x, = yI and 
observe that ZI= -11~ in (A.6); consequently {5&} are independent of i Denoting 

‘& = hkd,.k, Ck = /Zkqck’( J’,) b4.9) 
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and using the convention dk = 0 for k > r, we get for 1~ I’ 6 6 

c,=d,-dzj2fd,13-d~i:4+dsi5-dg.!6 

cI = d, - d, + ll&D2 - 5d5j6 + 137&/180 

c3 = d, - 1.5& + 1.75dj - 1.875& 

cd = L$ - 2d, + 17&/6 

c j = d, - 2.54 

c,=r7, 

Thus 

Izkq’yx,) = i: L!-- 
,=,(I-k)! 

(A.lO,l 

(A.ll! 

Reconstruction uia Primithe Function (RPj 

In this case Ik = (J;, ?; + 1 ) is the jth cell and X, = x, = i( +I’, + ~1, + I) is irs center. 
The given data is 

from which we evaluate the point values of the primitive function 

(A.13) 

Applying the algorithm (A.6t(A.8) to 

dl,k = w[ J’,,..., .‘;, +k] (A.!4i 

with i = i(j) selected by (3.4), we obtain the values of q”‘(.‘c/). Using the definition 
(3.8) in (A.4j we get the coefficients of the Taylor expansion in (A.1) by 

bl,k = q ‘k+ “(x,)/k!. (A.15) 

We note that when the grid is uniform yk = X- i.‘2 and we can also use the 
algorithm (A.9k(A.11). 



302 HARTENETAL. 

Reconstruction via Deconvolution (RD) 

We recall that RD is used with a uniform grid so that the given data 1~~ can be 
thought of as point values 15(x,) of the sliding average function (1.3). Applying the 
algorithm (A.9)-(A.ll) to 

d,,k = @[xi ,..., .x,+~] 

with x,=x, we get in (A.ll) for i=i(j- 1) the values of 

(A.16) 

h dk h p H,(x, - 0; W); 

when we apply this algorithm with i= i(j) and x,=x, we get in (A.ll) the values of 

hk 2 H,(x, + 0; W). 

Next we evaluate D/i,, in (3.15) by taking the min mod of the appropriate values 
in (A.17a) and (A.17b). Finally we use the back-substitution (3.19) to obtain the 
coefficients of the Taylor expansion (A.1 ) 

b,,k =; Dk,,/hk. (A.18) 

We remark that the use of the algorithms (A.9))(A.11) is preferable to that of 
(A.6)-(A.8) since it enables us to save computing time by rearranging the 
operations (A.16)(A.17) as follows: First we set i= i(j) in (A.16) and evaluate 
(A.9)(A.10). Using the same coefficients ck in (A.lO) we now apply (A.ll) to 
.Y‘=x, and X,.=X,+, to obtain (dk/dxk) H,(x, + 0; W) and (dk/dxk) H,(x,+ I - 0; M’), 
respectively; the min mod operation (3.15) is then performed in a following sweep. 

ACKNOWLEDGMENT 

The authors would like to thank P. L. Roe for his constructrve criticisms of the first draft of this paper. 

REFERENCES 

1. M. BEN-ARTZI AND J. FALCOWITZ, SIAM J. SCL Comput., in press. 
2. S. R. CHAKRAVARTHY, A. HARTEN, AND S. OSHER, “Essentially non-oscillatory shock-capturing 

schemes of arbitrarily htgh accuracy,” AL4A 86-0339, Reno, NA, 1986. 
3. A. J. CHORIN, J. Comput. Phys. 22, 511 (1976). 
4. P. COLELLA AND P. R WOODWARD, J. Compur. Ph.vs. 54, 174 (1984). 
5. S. K. GODUNOV, Mat. ST. 47, 271 (1959). 
6. E. HARABETIAN, “A convergent series expansion for hyperbolic systems of conservation laws,” NASA 

Contractor Report 172557, ICASE Report No. 85-13, 1985 (unpublished). 



HIGH ORDER ACCURATE SCHEMES. III 301 

7. A. HARTEN. Math. Camp. 32. 363 (1978). 
8. A HARTEN, J. Cornpu~. Phys. 49, 151 (1983). 
9. A HARTFEN, J. Coqrrf. Phys. 49, 357 (1983) 

10. A. HAR~N, SIN(IM 21. 1 (1984). 
11 A. HARTEN, “On high-order accurate mterpolation for non-oscillatory shock capturing schemes.” 

MRC Techmcal Summary Report No. 2829, University of Wisconsin. 1985 (unpublished). 
12 A. HARTEN, “Prehminary results on the extension of EN0 schemes to two-dimensional probiems,“ 

Proceedings of the Internattonal Conference on Hyperbohc Problems, Saint-Etienne, January 1986 
(In preparation ). 

i3. A. HARTFN END J. M HYMZN, J. Comput. Phys. SO 235 (1983). 
14. A. HARTEN, P. D LAX, AND B. VAN LEER. SI.dM Rev. 25. 35 (1983). 
15. .4. HARTEN AND S. OSHER. MRC Techmcal Summary Report No. 2823. May 1985, SINC::!!f, m press 
16 A. H~RTEN, B. ENGQUIST, S. OSHER, AND S. R. CHhm4vARTm'. Uniformly high-order accurate 

non-oscillatory schemes. II, tn preparatton. 
17 A H.~RTEN. S. OSHER, B ENGQUIST. AND S R CHAKR.~\~RTHY, .I, .Qpl :limm Murh. 2, 347 , 1986). 
18. P. D L4x. Cornm Puw .4pp/ Mrlth. 7. 159 (1954). 
:9. P D. LAS, “Hyperbohc systems of conservation laws and the mathematical theory of shock waves,” 

m Reggional Corzf: Series Lectures u1 Apphed Math. I’ol. 11 (SIAM. Philadelphia. 1972). 
30 P D. LAX AND 8. WENDROFF. Commun. Pure Appl. Ma/h 13, 217 (1960). 
21 P. D. LAX END B. WENDROFF. C’onwnun. Pure Appl. Math. 17 381 (1964). 
22. B. VAN LEER, J. Compur. Phw 32 101 (1979). 
23. S &HER, SINUM 21. 217 (1984). 

24. s. OSHER AND E. TADMOR. ?/lath. Camp., in press. 
25 P. L. ROE, J. Comput. Phys. 43, 357 (1981). 
26. P L. ROE, Some contributions to the modehng of dlscontmuous flows. m LecrrrreJ VI .4pphed 

Mathematicr C’oi. 22 (Amer Math. Sot.. Provtdence, RI. 1985). 
27. M. SEVER (MOCK). Order of dlsslpation near rarefaction centers, m Progress and Supercompur:;fg m 

Compuicrt~or~al Fhrld D~namrcs. Proreedmgs of 1: S.-Isruel Workshop. 1984 (Birkhauser. Boston, 
1985 ), p, 395. 

78 C A. SOD. J Coalpur. Phq’s. 27, I (1978). 
29 C STRANG, SINC’M 5, 506 (1968) 

30. P. K SWEBY. SI~VC’M 21, 995 (1984). 
31 P. WOODWARD AND P. COLLELI.A, J. Compur. Phys. 54 ll5 (1984). 
32. XlONC-HAti WU AND YObL4N ZHU, “A scheme of the singularity- separatmg method for the non- 

convex problem,” Computer Center, Academta Simca. 1984 (unpublished) 


